涉及双曲函数、特殊数和多项式的递归关系的新类别

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Y. Simsek
{"title":"涉及双曲函数、特殊数和多项式的递归关系的新类别","authors":"Y. Simsek","doi":"10.2298/aadm201020015s","DOIUrl":null,"url":null,"abstract":"By using the calculus of finite differences methods and the umbral calculus, we construct recurrence relations for a new class of special numbers. Using this recurrence relation, we define generating functions for this class of special numbers and also new classes of special polynomials. We investigate some properties of these generating functions. By using these generating functions with their functional equations, we obtain many new and interesting identities and relations related to these classes of special numbers and polynomials, the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers. Finally, some derivative formulas and integral formulas for these classes of special numbers and polynomials are given. In general, this article includes results that have the potential to be used in areas such as discrete mathematics, combinatorics analysis and their applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New classes of recurrence relations involving hyperbolic functions, special numbers and polynomials\",\"authors\":\"Y. Simsek\",\"doi\":\"10.2298/aadm201020015s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using the calculus of finite differences methods and the umbral calculus, we construct recurrence relations for a new class of special numbers. Using this recurrence relation, we define generating functions for this class of special numbers and also new classes of special polynomials. We investigate some properties of these generating functions. By using these generating functions with their functional equations, we obtain many new and interesting identities and relations related to these classes of special numbers and polynomials, the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers. Finally, some derivative formulas and integral formulas for these classes of special numbers and polynomials are given. In general, this article includes results that have the potential to be used in areas such as discrete mathematics, combinatorics analysis and their applications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm201020015s\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm201020015s","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

利用有限差分法和本影法,构造了一类新的特殊数的递推关系。利用这种递推关系,我们定义了这类特殊数的生成函数,也定义了一些新的特殊多项式的生成函数。我们研究了这些生成函数的一些性质。利用这些生成函数及其泛函方程,我们得到了与这类特殊数和多项式、伯努利数和多项式、欧拉数和多项式、斯特林数有关的许多新的有趣的恒等式和关系。最后给出了这类特殊数和多项式的导数公式和积分公式。一般来说,本文包含的结果有可能用于诸如离散数学、组合分析及其应用等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New classes of recurrence relations involving hyperbolic functions, special numbers and polynomials
By using the calculus of finite differences methods and the umbral calculus, we construct recurrence relations for a new class of special numbers. Using this recurrence relation, we define generating functions for this class of special numbers and also new classes of special polynomials. We investigate some properties of these generating functions. By using these generating functions with their functional equations, we obtain many new and interesting identities and relations related to these classes of special numbers and polynomials, the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers. Finally, some derivative formulas and integral formulas for these classes of special numbers and polynomials are given. In general, this article includes results that have the potential to be used in areas such as discrete mathematics, combinatorics analysis and their applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信