{"title":"一类与Bernstein基函数和循环无序相关的组合数的矩阵表示及其概率和渐近分析","authors":"Irem Kucukoglu, Y. Simsek","doi":"10.2298/AADM201017009K","DOIUrl":null,"url":null,"abstract":"In this paper, we mainly concerned with an alternate form of the generating functions for a certain class of combinatorial numbers and polynomials. We give matrix representations for these numbers and polynomials with their applications. We also derive various identities such as Rodrigues-type formula, recurrence relation and derivative formula for the aforementioned combinatorial numbers. Besides, we present some plots of the generating functions for these numbers. Furthermore, we give relationships of these combinatorial numbers and polynomials with not only Bernstein basis functions, but the two-variable Hermite polynomials and the number of cyclic derangements. We also present some applications of these relationships. By applying Laplace transform and Mellin transform respectively to the aforementioned functions, we give not only an infinite series representation, but also an interpolation function of these combinatorial numbers. We also provide a contour integral representation of these combinatorial numbers. In addition, we construct exponential generating functions for a new family of numbers arising from the linear combination of the numbers of cyclic derangements in the wreath product of the finite cyclic group and the symmetric group of permutations of a set. Finally, we analyse the aforementioned functions in probabilistic and asymptotic manners, and we give some of their relationships with not only the Laplace distribution, but also the standard normal distribution. Then, we provide an asymptotic power series representation of the aforementioned exponential generating functions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix representations for a certain class of combinatorial numbers associated with Bernstein basis functions and cyclic derangements and their probabilistic and asymptotic analyses\",\"authors\":\"Irem Kucukoglu, Y. Simsek\",\"doi\":\"10.2298/AADM201017009K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we mainly concerned with an alternate form of the generating functions for a certain class of combinatorial numbers and polynomials. We give matrix representations for these numbers and polynomials with their applications. We also derive various identities such as Rodrigues-type formula, recurrence relation and derivative formula for the aforementioned combinatorial numbers. Besides, we present some plots of the generating functions for these numbers. Furthermore, we give relationships of these combinatorial numbers and polynomials with not only Bernstein basis functions, but the two-variable Hermite polynomials and the number of cyclic derangements. We also present some applications of these relationships. By applying Laplace transform and Mellin transform respectively to the aforementioned functions, we give not only an infinite series representation, but also an interpolation function of these combinatorial numbers. We also provide a contour integral representation of these combinatorial numbers. In addition, we construct exponential generating functions for a new family of numbers arising from the linear combination of the numbers of cyclic derangements in the wreath product of the finite cyclic group and the symmetric group of permutations of a set. Finally, we analyse the aforementioned functions in probabilistic and asymptotic manners, and we give some of their relationships with not only the Laplace distribution, but also the standard normal distribution. Then, we provide an asymptotic power series representation of the aforementioned exponential generating functions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/AADM201017009K\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/AADM201017009K","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Matrix representations for a certain class of combinatorial numbers associated with Bernstein basis functions and cyclic derangements and their probabilistic and asymptotic analyses
In this paper, we mainly concerned with an alternate form of the generating functions for a certain class of combinatorial numbers and polynomials. We give matrix representations for these numbers and polynomials with their applications. We also derive various identities such as Rodrigues-type formula, recurrence relation and derivative formula for the aforementioned combinatorial numbers. Besides, we present some plots of the generating functions for these numbers. Furthermore, we give relationships of these combinatorial numbers and polynomials with not only Bernstein basis functions, but the two-variable Hermite polynomials and the number of cyclic derangements. We also present some applications of these relationships. By applying Laplace transform and Mellin transform respectively to the aforementioned functions, we give not only an infinite series representation, but also an interpolation function of these combinatorial numbers. We also provide a contour integral representation of these combinatorial numbers. In addition, we construct exponential generating functions for a new family of numbers arising from the linear combination of the numbers of cyclic derangements in the wreath product of the finite cyclic group and the symmetric group of permutations of a set. Finally, we analyse the aforementioned functions in probabilistic and asymptotic manners, and we give some of their relationships with not only the Laplace distribution, but also the standard normal distribution. Then, we provide an asymptotic power series representation of the aforementioned exponential generating functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.