六边形图的三路径顶点覆盖和解离数

IF 1 4区 数学 Q1 MATHEMATICS
Rija Erveš, Aleksandra Tepeh
{"title":"六边形图的三路径顶点覆盖和解离数","authors":"Rija Erveš, Aleksandra Tepeh","doi":"10.2298/aadm201009007e","DOIUrl":null,"url":null,"abstract":"A subset P of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from P. The cardinality of a minimum k-path vertex cover is called the k-path vertex cover number of G, and is denoted by ?k(G). It is known that the problem of finding a minimum 3-path vertex cover is NP-hard for planar graphs. In this paper we establish an upper bound for ?3(G), where G is from an important family of planar graphs, called hexagonal graphs, arising from real world applications.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3-path vertex cover and dissociation number of hexagonal graphs\",\"authors\":\"Rija Erveš, Aleksandra Tepeh\",\"doi\":\"10.2298/aadm201009007e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset P of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from P. The cardinality of a minimum k-path vertex cover is called the k-path vertex cover number of G, and is denoted by ?k(G). It is known that the problem of finding a minimum 3-path vertex cover is NP-hard for planar graphs. In this paper we establish an upper bound for ?3(G), where G is from an important family of planar graphs, called hexagonal graphs, arising from real world applications.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm201009007e\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm201009007e","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果图G中k阶的每条路径至少包含一个来自P的顶点,则图G的顶点子集P称为k路径顶点覆盖。最小k路径顶点覆盖的基数称为G的k路径顶点覆盖数,用?k(G)表示。众所周知,寻找最小3路径顶点覆盖的问题对于平面图来说是np困难的。本文建立了?3(G)的上界,其中G来自一个重要的平面图族,称为六边形图,是在实际应用中产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-path vertex cover and dissociation number of hexagonal graphs
A subset P of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from P. The cardinality of a minimum k-path vertex cover is called the k-path vertex cover number of G, and is denoted by ?k(G). It is known that the problem of finding a minimum 3-path vertex cover is NP-hard for planar graphs. In this paper we establish an upper bound for ?3(G), where G is from an important family of planar graphs, called hexagonal graphs, arising from real world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信