{"title":"计算作为集合的扁平分区产生的排列中的子词模式","authors":"T. Mansour, M. Shattuck","doi":"10.2298/aadm210223009m","DOIUrl":null,"url":null,"abstract":"We consider various statistics on the set Fn consisting of the distinct permutations of length n+1 that arise as a flattening of some partition of the same size. In particular, we enumerate members of Fn according to the number of occurrences of three-letter consecutive patterns, considered more broadly in the context of r-partitions. As special cases of our results, we obtain formulas for the number of members of Fn avoiding a given consecutive pattern and for the total number of occurrences of a pattern over all members of Fn.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting subword patterns in permutations arising as flattened partitions of sets\",\"authors\":\"T. Mansour, M. Shattuck\",\"doi\":\"10.2298/aadm210223009m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider various statistics on the set Fn consisting of the distinct permutations of length n+1 that arise as a flattening of some partition of the same size. In particular, we enumerate members of Fn according to the number of occurrences of three-letter consecutive patterns, considered more broadly in the context of r-partitions. As special cases of our results, we obtain formulas for the number of members of Fn avoiding a given consecutive pattern and for the total number of occurrences of a pattern over all members of Fn.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm210223009m\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210223009m","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Counting subword patterns in permutations arising as flattened partitions of sets
We consider various statistics on the set Fn consisting of the distinct permutations of length n+1 that arise as a flattening of some partition of the same size. In particular, we enumerate members of Fn according to the number of occurrences of three-letter consecutive patterns, considered more broadly in the context of r-partitions. As special cases of our results, we obtain formulas for the number of members of Fn avoiding a given consecutive pattern and for the total number of occurrences of a pattern over all members of Fn.
期刊介绍:
Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).