{"title":"医疗大数据和可穿戴物联网医疗系统在COVID-19确诊或疑似患者远程监测和护理中的应用","authors":"Deborah Hurley","doi":"10.22381/ajmr8220216","DOIUrl":null,"url":null,"abstract":"Methodology and Empirical Analysis Building our argument by drawing on data collected from Accenture, Amwell, Deloitte, Ericsson ConsumerLab, Kyruus, The Rockefeller Foundation, Syneos Health, and USAID, we performed analyses and made estimates regarding artificial intelligence-driven biosensors in diagnosis, surveillance, and prevention during the COVID-19 pandemic. Study Design, Survey Methods, and Materials The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau's American Community Survey to reflect reliably and accurately the demographic composition of the United States. Results and Discussion Artificial intelligence-enabled wearable medical devices for preliminary disease detection and monitoring and physiochemical alterations assist in medical diagnosis, assessing infection levels and subsequent therapeutic decision through artificial intelligence-driven biosensors. (Jaleel et al., 2020) Deep machine learning and cloud computing are pivotal in Internet of Things-based healthcare by enabling data analytics-based smart medical services (Lăzăroiu et al., 2021) in evidence-based decision making, remote monitoring, disease prevention and diagnoses, and risk factor identification.","PeriodicalId":91446,"journal":{"name":"American journal of medical research (New York, N.Y.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Medical Big Data and Wearable Internet of Things Healthcare Systems in Remotely Monitoring and Caring for Confirmed or Suspected COVID-19 Patients\",\"authors\":\"Deborah Hurley\",\"doi\":\"10.22381/ajmr8220216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methodology and Empirical Analysis Building our argument by drawing on data collected from Accenture, Amwell, Deloitte, Ericsson ConsumerLab, Kyruus, The Rockefeller Foundation, Syneos Health, and USAID, we performed analyses and made estimates regarding artificial intelligence-driven biosensors in diagnosis, surveillance, and prevention during the COVID-19 pandemic. Study Design, Survey Methods, and Materials The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau's American Community Survey to reflect reliably and accurately the demographic composition of the United States. Results and Discussion Artificial intelligence-enabled wearable medical devices for preliminary disease detection and monitoring and physiochemical alterations assist in medical diagnosis, assessing infection levels and subsequent therapeutic decision through artificial intelligence-driven biosensors. (Jaleel et al., 2020) Deep machine learning and cloud computing are pivotal in Internet of Things-based healthcare by enabling data analytics-based smart medical services (Lăzăroiu et al., 2021) in evidence-based decision making, remote monitoring, disease prevention and diagnoses, and risk factor identification.\",\"PeriodicalId\":91446,\"journal\":{\"name\":\"American journal of medical research (New York, N.Y.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of medical research (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22381/ajmr8220216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of medical research (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22381/ajmr8220216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
摘要
我们利用从埃森哲、安姆威尔、德勤、爱立信消费者实验室、Kyruus、洛克菲勒基金会、Syneos Health和美国国际开发署收集的数据,对2019冠状病毒病大流行期间人工智能驱动的生物传感器在诊断、监测和预防方面的应用进行了分析和估计。研究设计、调查方法和材料访谈是在线进行的,数据采用人口普查局美国社区调查的五个变量(年龄、种族/民族、性别、教育程度和地理区域)加权,以可靠和准确地反映美国的人口构成。人工智能支持的可穿戴医疗设备用于疾病的初步检测和监测,以及通过人工智能驱动的生物传感器进行物理化学改变,协助医学诊断,评估感染水平和随后的治疗决策。(Jaleel et al., 2020)深度机器学习和云计算通过在循证决策、远程监测、疾病预防和诊断以及风险因素识别方面实现基于数据分析的智能医疗服务(l z等人,2021),在基于物联网的医疗保健中发挥关键作用。
Medical Big Data and Wearable Internet of Things Healthcare Systems in Remotely Monitoring and Caring for Confirmed or Suspected COVID-19 Patients
Methodology and Empirical Analysis Building our argument by drawing on data collected from Accenture, Amwell, Deloitte, Ericsson ConsumerLab, Kyruus, The Rockefeller Foundation, Syneos Health, and USAID, we performed analyses and made estimates regarding artificial intelligence-driven biosensors in diagnosis, surveillance, and prevention during the COVID-19 pandemic. Study Design, Survey Methods, and Materials The interviews were conducted online and data were weighted by five variables (age, race/ethnicity, gender, education, and geographic region) using the Census Bureau's American Community Survey to reflect reliably and accurately the demographic composition of the United States. Results and Discussion Artificial intelligence-enabled wearable medical devices for preliminary disease detection and monitoring and physiochemical alterations assist in medical diagnosis, assessing infection levels and subsequent therapeutic decision through artificial intelligence-driven biosensors. (Jaleel et al., 2020) Deep machine learning and cloud computing are pivotal in Internet of Things-based healthcare by enabling data analytics-based smart medical services (Lăzăroiu et al., 2021) in evidence-based decision making, remote monitoring, disease prevention and diagnoses, and risk factor identification.