机器和深度学习算法、计算机视觉技术和基于物联网的医疗监控系统用于COVID-19的预防、测试、检测和治疗

Katarína Zvaríková
{"title":"机器和深度学习算法、计算机视觉技术和基于物联网的医疗监控系统用于COVID-19的预防、测试、检测和治疗","authors":"Katarína Zvaríková","doi":"10.22381/ajmr91202210","DOIUrl":null,"url":null,"abstract":"Keywords: Internet of Things;machine and deep learning algorithm;COVID-19 1.Introduction The purpose of our systematic review is to examine the recently published literature on COVID-19 prevention, testing, detection, and treatment, and integrate the insights it configures on machine and deep learning algorithms, computer vision technologies, and Internet of Things-based healthcare monitoring systems. The manuscript is organized as following: theoretical overview (section 2), methodology (section 3), COVID19 detection and diagnostic tools (section 4), machine learning techniques, healthcare sensor devices, and computer vision (section 5), machine learning algorithms and Internet of Things-based monitoring systems (section 6), discussion (section 7), synopsis of the main research outcomes (section 8), conclusions (section 9), limitations, implications, and further directions of research (section 10). (Table 3) 5.Machine Learning Techniques, Healthcare Sensor Devices, and Computer Vision Internet of Things-based healthcare monitoring systems are pivotal in accurate and suitable patient treatment (Jain et al., 2021;Li et al., 2021;Rhayem et al., 2021;Zhang et al., 2021a) by integrating medical wearable sensors, actuators, and networked devices. (Table 4) 6.Machine Learning Algorithms and Internet of Things-based Monitoring Systems Internet of Medical Things devices and wearables can be pivotal in contact tracing, early diagnosis, and symptom tracking (Khowaja et al., 2021;Mehrdad et al., 2021;Tai et al., 2021) by use of machine learning techniques, neural network architectures, and data fusion.","PeriodicalId":91446,"journal":{"name":"American journal of medical research (New York, N.Y.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Machine and Deep Learning Algorithms, Computer Vision Technologies, and Internet of Things-based Healthcare Monitoring Systems in COVID-19 Prevention, Testing, Detection, and Treatment\",\"authors\":\"Katarína Zvaríková\",\"doi\":\"10.22381/ajmr91202210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keywords: Internet of Things;machine and deep learning algorithm;COVID-19 1.Introduction The purpose of our systematic review is to examine the recently published literature on COVID-19 prevention, testing, detection, and treatment, and integrate the insights it configures on machine and deep learning algorithms, computer vision technologies, and Internet of Things-based healthcare monitoring systems. The manuscript is organized as following: theoretical overview (section 2), methodology (section 3), COVID19 detection and diagnostic tools (section 4), machine learning techniques, healthcare sensor devices, and computer vision (section 5), machine learning algorithms and Internet of Things-based monitoring systems (section 6), discussion (section 7), synopsis of the main research outcomes (section 8), conclusions (section 9), limitations, implications, and further directions of research (section 10). (Table 3) 5.Machine Learning Techniques, Healthcare Sensor Devices, and Computer Vision Internet of Things-based healthcare monitoring systems are pivotal in accurate and suitable patient treatment (Jain et al., 2021;Li et al., 2021;Rhayem et al., 2021;Zhang et al., 2021a) by integrating medical wearable sensors, actuators, and networked devices. (Table 4) 6.Machine Learning Algorithms and Internet of Things-based Monitoring Systems Internet of Medical Things devices and wearables can be pivotal in contact tracing, early diagnosis, and symptom tracking (Khowaja et al., 2021;Mehrdad et al., 2021;Tai et al., 2021) by use of machine learning techniques, neural network architectures, and data fusion.\",\"PeriodicalId\":91446,\"journal\":{\"name\":\"American journal of medical research (New York, N.Y.)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of medical research (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22381/ajmr91202210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of medical research (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22381/ajmr91202210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

关键词:物联网;机器与深度学习算法;COVID-19我们系统综述的目的是研究最近发表的关于COVID-19预防、测试、检测和治疗的文献,并整合其对机器和深度学习算法、计算机视觉技术以及基于物联网的医疗监控系统的见解。全文组织如下:理论概述(第2节)、方法学(第3节)、covid - 19检测和诊断工具(第4节)、机器学习技术、医疗保健传感器设备和计算机视觉(第5节)、机器学习算法和基于物联网的监测系统(第6节)、讨论(第7节)、主要研究成果概述(第8节)、结论(第9节)、局限性、影响和进一步的研究方向(第10节)。(表3)机器学习技术、医疗保健传感器设备和基于计算机视觉物联网的医疗保健监测系统通过集成医疗可穿戴传感器、执行器和网络设备,对准确和合适的患者治疗至关重要(Jain等人,2021;Li等人,2021;Rhayem等人,2021;Zhang等人,2021a)。(表4)通过使用机器学习技术、神经网络架构和数据融合,医疗物联网设备和可穿戴设备在接触者追踪、早期诊断和症状跟踪(Khowaja等人,2021;Mehrdad等人,2021;Tai等人,2021)方面可能发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine and Deep Learning Algorithms, Computer Vision Technologies, and Internet of Things-based Healthcare Monitoring Systems in COVID-19 Prevention, Testing, Detection, and Treatment
Keywords: Internet of Things;machine and deep learning algorithm;COVID-19 1.Introduction The purpose of our systematic review is to examine the recently published literature on COVID-19 prevention, testing, detection, and treatment, and integrate the insights it configures on machine and deep learning algorithms, computer vision technologies, and Internet of Things-based healthcare monitoring systems. The manuscript is organized as following: theoretical overview (section 2), methodology (section 3), COVID19 detection and diagnostic tools (section 4), machine learning techniques, healthcare sensor devices, and computer vision (section 5), machine learning algorithms and Internet of Things-based monitoring systems (section 6), discussion (section 7), synopsis of the main research outcomes (section 8), conclusions (section 9), limitations, implications, and further directions of research (section 10). (Table 3) 5.Machine Learning Techniques, Healthcare Sensor Devices, and Computer Vision Internet of Things-based healthcare monitoring systems are pivotal in accurate and suitable patient treatment (Jain et al., 2021;Li et al., 2021;Rhayem et al., 2021;Zhang et al., 2021a) by integrating medical wearable sensors, actuators, and networked devices. (Table 4) 6.Machine Learning Algorithms and Internet of Things-based Monitoring Systems Internet of Medical Things devices and wearables can be pivotal in contact tracing, early diagnosis, and symptom tracking (Khowaja et al., 2021;Mehrdad et al., 2021;Tai et al., 2021) by use of machine learning techniques, neural network architectures, and data fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信