{"title":"通过超二次性的外部jensen型算子不等式","authors":"M. Kian, M. Krnic, M. Rostamian","doi":"10.2298/aadm191010031k","DOIUrl":null,"url":null,"abstract":"In this paper we establish several Jensen-type operator inequalities for a class of superquadratic functions and self-adjoint operators. Our results are given in the so-called external form. As an application, we give improvements of the H?lder-McCarthy inequality and the classical discrete and integral Jensen inequality in the corresponding external forms. In addition, the established Jensen-type inequalities are compared with the previously known results and we show that our results provide more accurate estimates in some general settings.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"External Jensen-type operator inequalities via superquadraticity\",\"authors\":\"M. Kian, M. Krnic, M. Rostamian\",\"doi\":\"10.2298/aadm191010031k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we establish several Jensen-type operator inequalities for a class of superquadratic functions and self-adjoint operators. Our results are given in the so-called external form. As an application, we give improvements of the H?lder-McCarthy inequality and the classical discrete and integral Jensen inequality in the corresponding external forms. In addition, the established Jensen-type inequalities are compared with the previously known results and we show that our results provide more accurate estimates in some general settings.\",\"PeriodicalId\":51232,\"journal\":{\"name\":\"Applicable Analysis and Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Analysis and Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/aadm191010031k\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm191010031k","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
External Jensen-type operator inequalities via superquadraticity
In this paper we establish several Jensen-type operator inequalities for a class of superquadratic functions and self-adjoint operators. Our results are given in the so-called external form. As an application, we give improvements of the H?lder-McCarthy inequality and the classical discrete and integral Jensen inequality in the corresponding external forms. In addition, the established Jensen-type inequalities are compared with the previously known results and we show that our results provide more accurate estimates in some general settings.
期刊介绍:
Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).