等相关正态总体Guttman-Kaiser准则的二分类行为

IF 0.3 Q4 MATHEMATICS
Y. Akama, Atina Husnaqilati
{"title":"等相关正态总体Guttman-Kaiser准则的二分类行为","authors":"Y. Akama, Atina Husnaqilati","doi":"10.22342/jims.28.3.1158.272-303","DOIUrl":null,"url":null,"abstract":"We consider a $p$-dimensional, centered normal population such that all variables have a positive variance and any correlation coefficient between different variables is a given nonnegative constant $\\rho<1$. Suppose that both the sample size $n$ and population dimension $p$ tend to infinity with $p/n \\to c>0$. We prove that the limiting spectral distributions of the sample covariance matrices and the sample correlation matrices are Mar\\v{c}enko-Pastur distribution of index $c$ and scale parameter $1-\\rho$.By the limiting spectral distributions, we rigorously show the limiting behavior of widespread stopping rules Guttman-Kaiser criterion and cumulative-percentage-of-variation rule in PCA and EFA.As a result, we establish the following dichotomous behavior of Guttman-Kaiser criterion when both $n$ and $p$ are large, but $p/n$ is small: (1) the criterion retains a small number of variables for $\\rho>0$, as suggested by Kaiser, Humphreys, and Tucker [Kaiser, H. F. (1992). On Cliff's formula, the Kaiser-Guttman rule and the number of factors. \\emph{Percept. Mot. Ski.} 74]; and(2) the criterion retains $p/2$ variables for $\\rho=0$, as in a simulation study [Yeomans, K. A. and Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. \\emph{J. Royal Stat. Soc. Series D} 31(3)].","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Dichotomous Behavior of Guttman-Kaiser Criterion from Equi-Correlated Normal Population\",\"authors\":\"Y. Akama, Atina Husnaqilati\",\"doi\":\"10.22342/jims.28.3.1158.272-303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a $p$-dimensional, centered normal population such that all variables have a positive variance and any correlation coefficient between different variables is a given nonnegative constant $\\\\rho<1$. Suppose that both the sample size $n$ and population dimension $p$ tend to infinity with $p/n \\\\to c>0$. We prove that the limiting spectral distributions of the sample covariance matrices and the sample correlation matrices are Mar\\\\v{c}enko-Pastur distribution of index $c$ and scale parameter $1-\\\\rho$.By the limiting spectral distributions, we rigorously show the limiting behavior of widespread stopping rules Guttman-Kaiser criterion and cumulative-percentage-of-variation rule in PCA and EFA.As a result, we establish the following dichotomous behavior of Guttman-Kaiser criterion when both $n$ and $p$ are large, but $p/n$ is small: (1) the criterion retains a small number of variables for $\\\\rho>0$, as suggested by Kaiser, Humphreys, and Tucker [Kaiser, H. F. (1992). On Cliff's formula, the Kaiser-Guttman rule and the number of factors. \\\\emph{Percept. Mot. Ski.} 74]; and(2) the criterion retains $p/2$ variables for $\\\\rho=0$, as in a simulation study [Yeomans, K. A. and Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. \\\\emph{J. Royal Stat. Soc. Series D} 31(3)].\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/jims.28.3.1158.272-303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.28.3.1158.272-303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑一个$p$维、居中的正态总体,这样所有变量都有正方差,不同变量之间的任何相关系数都是给定的非负常数$\rho0$。我们证明了样本协方差矩阵和样本相关矩阵的极限谱分布是指数$c$和尺度参数$1-\rho$的Mar \v{c} enko-Pastur分布。通过极限谱分布,我们严格地证明了PCA和EFA中广泛停止规则Guttman-Kaiser准则和累积变异百分比规则的极限行为。因此,当$n$和$p$都很大,但$p/n$很小时,我们建立了以下Guttman-Kaiser准则的二分类行为:(1)根据Kaiser, Humphreys和Tucker [Kaiser, H. F.(1992)]的建议,该准则保留了$\rho>0$的少量变量。克里夫公式,凯撒-古特曼法则和因子数。\emph{感知。不是。}[74];(2)标准保留$\rho=0$的$p/2$变量,如模拟研究[Yeomans, K. a .和Golder, P. a .(1982)]。Guttman-Kaiser标准作为共同因素数量的预测因子。\emph{皇家司法学院D系列}31(3)]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dichotomous Behavior of Guttman-Kaiser Criterion from Equi-Correlated Normal Population
We consider a $p$-dimensional, centered normal population such that all variables have a positive variance and any correlation coefficient between different variables is a given nonnegative constant $\rho<1$. Suppose that both the sample size $n$ and population dimension $p$ tend to infinity with $p/n \to c>0$. We prove that the limiting spectral distributions of the sample covariance matrices and the sample correlation matrices are Mar\v{c}enko-Pastur distribution of index $c$ and scale parameter $1-\rho$.By the limiting spectral distributions, we rigorously show the limiting behavior of widespread stopping rules Guttman-Kaiser criterion and cumulative-percentage-of-variation rule in PCA and EFA.As a result, we establish the following dichotomous behavior of Guttman-Kaiser criterion when both $n$ and $p$ are large, but $p/n$ is small: (1) the criterion retains a small number of variables for $\rho>0$, as suggested by Kaiser, Humphreys, and Tucker [Kaiser, H. F. (1992). On Cliff's formula, the Kaiser-Guttman rule and the number of factors. \emph{Percept. Mot. Ski.} 74]; and(2) the criterion retains $p/2$ variables for $\rho=0$, as in a simulation study [Yeomans, K. A. and Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. \emph{J. Royal Stat. Soc. Series D} 31(3)].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信