G. Thyne, M. Tomasso, S. Bywater‐Reyes, D. Budd, Brian M. Reyes
{"title":"怀俄明州西南部Moxa Arch-LaBarge平台密西西比麦迪逊组CO2封存模型的孔隙度和渗透率特征","authors":"G. Thyne, M. Tomasso, S. Bywater‐Reyes, D. Budd, Brian M. Reyes","doi":"10.2113/GSROCKY.45.2.133","DOIUrl":null,"url":null,"abstract":"Porosity and permeability data for the Mississippian Madison Group in southwestern Wyoming were compiled and evaluated to relate these properties to stratigraphic facies in the Madison Group. The study was performed to provide baseline data for a geologic model required to sequester carbon in the study area. Public domain geological and petrophysical data provided the basis for the evaluation. Using the available database of wire-line logs and core from wells that penetrate the Madison Group, we place the wells within the regional structural and sequence-stratigraphic framework and detail porosity-permeability relationships. The highest porosity and permeability in the study area is present in the lower portion of the formation in dolomitic packstone-to grainstone-dominated facies near the top of the transgressive systems tract. Wire-line logs were used to calculate porosity values that correlate well with the more limited core-based data. The porosity in the Madison Group has a tri-modal distribution with porosity related to depositional facies. The first group is characterized by low porosity ( 12 percent) with a strong log permeability to porosity covariance. While lateral variations in porosity related to depositional facies can be traced over tens of kilometers, natural fractures appear to be a significant control on permeability in the lower porosity portions of the Madison.","PeriodicalId":34958,"journal":{"name":"Rocky Mountain Geology","volume":"45 1","pages":"133-150"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSROCKY.45.2.133","citationCount":"10","resultStr":"{\"title\":\"Characterization of porosity and permeability for CO2 sequestration models in the Mississippian Madison Group, Moxa Arch–LaBarge Platform, southwestern Wyoming\",\"authors\":\"G. Thyne, M. Tomasso, S. Bywater‐Reyes, D. Budd, Brian M. Reyes\",\"doi\":\"10.2113/GSROCKY.45.2.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porosity and permeability data for the Mississippian Madison Group in southwestern Wyoming were compiled and evaluated to relate these properties to stratigraphic facies in the Madison Group. The study was performed to provide baseline data for a geologic model required to sequester carbon in the study area. Public domain geological and petrophysical data provided the basis for the evaluation. Using the available database of wire-line logs and core from wells that penetrate the Madison Group, we place the wells within the regional structural and sequence-stratigraphic framework and detail porosity-permeability relationships. The highest porosity and permeability in the study area is present in the lower portion of the formation in dolomitic packstone-to grainstone-dominated facies near the top of the transgressive systems tract. Wire-line logs were used to calculate porosity values that correlate well with the more limited core-based data. The porosity in the Madison Group has a tri-modal distribution with porosity related to depositional facies. The first group is characterized by low porosity ( 12 percent) with a strong log permeability to porosity covariance. While lateral variations in porosity related to depositional facies can be traced over tens of kilometers, natural fractures appear to be a significant control on permeability in the lower porosity portions of the Madison.\",\"PeriodicalId\":34958,\"journal\":{\"name\":\"Rocky Mountain Geology\",\"volume\":\"45 1\",\"pages\":\"133-150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2113/GSROCKY.45.2.133\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/GSROCKY.45.2.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSROCKY.45.2.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Characterization of porosity and permeability for CO2 sequestration models in the Mississippian Madison Group, Moxa Arch–LaBarge Platform, southwestern Wyoming
Porosity and permeability data for the Mississippian Madison Group in southwestern Wyoming were compiled and evaluated to relate these properties to stratigraphic facies in the Madison Group. The study was performed to provide baseline data for a geologic model required to sequester carbon in the study area. Public domain geological and petrophysical data provided the basis for the evaluation. Using the available database of wire-line logs and core from wells that penetrate the Madison Group, we place the wells within the regional structural and sequence-stratigraphic framework and detail porosity-permeability relationships. The highest porosity and permeability in the study area is present in the lower portion of the formation in dolomitic packstone-to grainstone-dominated facies near the top of the transgressive systems tract. Wire-line logs were used to calculate porosity values that correlate well with the more limited core-based data. The porosity in the Madison Group has a tri-modal distribution with porosity related to depositional facies. The first group is characterized by low porosity ( 12 percent) with a strong log permeability to porosity covariance. While lateral variations in porosity related to depositional facies can be traced over tens of kilometers, natural fractures appear to be a significant control on permeability in the lower porosity portions of the Madison.
期刊介绍:
Rocky Mountain Geology (formerly Contributions to Geology) is published twice yearly by the Department of Geology and Geophysics at the University of Wyoming. The focus of the journal is regional geology and paleontology of the Rocky Mountains and adjacent areas of western North America. This high-impact, scholarly journal, is an important resource for professional earth scientists. The high-quality, refereed articles report original research by top specialists in all aspects of geology and paleontology in the greater Rocky Mountain region.