S. Nelson, R. Harris, B. Kowallis, M. Dorais, K. Constenius, M. Heizler, Daniel E. Barnett
{"title":"犹他州瓦萨奇断裂带下盘基底块体的长期埋掘史","authors":"S. Nelson, R. Harris, B. Kowallis, M. Dorais, K. Constenius, M. Heizler, Daniel E. Barnett","doi":"10.2113/GSROCKY.44.2.103","DOIUrl":null,"url":null,"abstract":"Thermochronologic studies of the Santaquin and Farmington Canyon crystalline basement complexes, exposed in the footwall of the Wasatch fault in Utah, provide rare opportunities to investigate the long-term tectonic, burial, and exhumation history of this region. Both complexes underwent amphibolite-facies metamorphism at ∼1700 Ma, followed by a complex pressure-temperature-time history. By 740–770 Ma, exhumation had brought both complexes to the surface from a depth of ∼9–10 km (3–3.5 kbar), followed by reburial by passive margin, Oquirrh Basin, and foreland basin sedimentation from Neoproterozoic through early Cretaceous time.\n\nThe final structural pathway to present-day surface exposure of both complexes began in early Cretaceous time, with crustal contraction along the Sevier belt and resultant structural stacking. Structural breaching of the thrust culminations and final cooling of the crystalline complexes occurred as a result of Tertiary through Holocene extension and accompanying normal faulting.\n\nInferred exhumation rates for the last 10–15 my are on the order of 0.3–0.6 mm/yr, although recent slip rates across the Wasatch fault appear to be several times higher. This suggests that: (1) periods of enhanced slip on the Wasatch fault from Miocene to present time may have been punctuated by periods of quiescence; and (2) the fault now may be experiencing an episode of rapid slip. Alternatively, strain may have been partitioned into multiple fault strands at a boundary between the Provo and Nephi segments.","PeriodicalId":34958,"journal":{"name":"Rocky Mountain Geology","volume":"44 1","pages":"103-119"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSROCKY.44.2.103","citationCount":"6","resultStr":"{\"title\":\"The long-term burial and exhumation history of basement blocks in the footwall of the Wasatch fault, Utah\",\"authors\":\"S. Nelson, R. Harris, B. Kowallis, M. Dorais, K. Constenius, M. Heizler, Daniel E. Barnett\",\"doi\":\"10.2113/GSROCKY.44.2.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermochronologic studies of the Santaquin and Farmington Canyon crystalline basement complexes, exposed in the footwall of the Wasatch fault in Utah, provide rare opportunities to investigate the long-term tectonic, burial, and exhumation history of this region. Both complexes underwent amphibolite-facies metamorphism at ∼1700 Ma, followed by a complex pressure-temperature-time history. By 740–770 Ma, exhumation had brought both complexes to the surface from a depth of ∼9–10 km (3–3.5 kbar), followed by reburial by passive margin, Oquirrh Basin, and foreland basin sedimentation from Neoproterozoic through early Cretaceous time.\\n\\nThe final structural pathway to present-day surface exposure of both complexes began in early Cretaceous time, with crustal contraction along the Sevier belt and resultant structural stacking. Structural breaching of the thrust culminations and final cooling of the crystalline complexes occurred as a result of Tertiary through Holocene extension and accompanying normal faulting.\\n\\nInferred exhumation rates for the last 10–15 my are on the order of 0.3–0.6 mm/yr, although recent slip rates across the Wasatch fault appear to be several times higher. This suggests that: (1) periods of enhanced slip on the Wasatch fault from Miocene to present time may have been punctuated by periods of quiescence; and (2) the fault now may be experiencing an episode of rapid slip. Alternatively, strain may have been partitioned into multiple fault strands at a boundary between the Provo and Nephi segments.\",\"PeriodicalId\":34958,\"journal\":{\"name\":\"Rocky Mountain Geology\",\"volume\":\"44 1\",\"pages\":\"103-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2113/GSROCKY.44.2.103\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/GSROCKY.44.2.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSROCKY.44.2.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 6
摘要
对犹他州瓦萨奇断层下盘的圣塔昆和法明顿峡谷结晶基底复合体进行的热年代学研究,为研究该地区的长期构造、埋藏和挖掘历史提供了难得的机会。这两个杂岩在~ 1700 Ma经历了角闪岩相变质作用,随后是一个复杂的压力-温度-时间历史。到740-770 Ma,这两个复体从深度约9-10 km (3-3.5 kbar)处被挖掘出地表,随后被被动边缘、oquirh盆地和新元古代至早白垩世的前陆盆地沉积重新掩埋。这两个杂岩现今地表暴露的最终构造路径始于早白垩世,地壳沿塞维尔带收缩,形成构造叠加。第三纪至全新世的伸展作用和伴随的正断层作用导致了逆冲构造顶点的断裂和结晶复合体的最终冷却。据推断,过去10-15年的挖掘速率约为0.3-0.6毫米/年,尽管最近在Wasatch断层上的滑动速率似乎高出几倍。这表明:(1)中新世至今,瓦萨奇断层的加强滑动期可能被静止期所打断;(2)断层现在可能正在经历一次快速滑动。或者,应变可能在普罗沃和尼腓段之间的边界上被分割成多个断层链。
The long-term burial and exhumation history of basement blocks in the footwall of the Wasatch fault, Utah
Thermochronologic studies of the Santaquin and Farmington Canyon crystalline basement complexes, exposed in the footwall of the Wasatch fault in Utah, provide rare opportunities to investigate the long-term tectonic, burial, and exhumation history of this region. Both complexes underwent amphibolite-facies metamorphism at ∼1700 Ma, followed by a complex pressure-temperature-time history. By 740–770 Ma, exhumation had brought both complexes to the surface from a depth of ∼9–10 km (3–3.5 kbar), followed by reburial by passive margin, Oquirrh Basin, and foreland basin sedimentation from Neoproterozoic through early Cretaceous time.
The final structural pathway to present-day surface exposure of both complexes began in early Cretaceous time, with crustal contraction along the Sevier belt and resultant structural stacking. Structural breaching of the thrust culminations and final cooling of the crystalline complexes occurred as a result of Tertiary through Holocene extension and accompanying normal faulting.
Inferred exhumation rates for the last 10–15 my are on the order of 0.3–0.6 mm/yr, although recent slip rates across the Wasatch fault appear to be several times higher. This suggests that: (1) periods of enhanced slip on the Wasatch fault from Miocene to present time may have been punctuated by periods of quiescence; and (2) the fault now may be experiencing an episode of rapid slip. Alternatively, strain may have been partitioned into multiple fault strands at a boundary between the Provo and Nephi segments.
期刊介绍:
Rocky Mountain Geology (formerly Contributions to Geology) is published twice yearly by the Department of Geology and Geophysics at the University of Wyoming. The focus of the journal is regional geology and paleontology of the Rocky Mountains and adjacent areas of western North America. This high-impact, scholarly journal, is an important resource for professional earth scientists. The high-quality, refereed articles report original research by top specialists in all aspects of geology and paleontology in the greater Rocky Mountain region.