{"title":"ENSO对青藏高原热状况的影响","authors":"Yafei Wang, Xiaoyu Xu","doi":"10.2151/JMSJ.2018-032","DOIUrl":null,"url":null,"abstract":"The proposed study aims to examine the relation between the Tibetan Plateau (TP) thermal condition and El Niño and Southern Oscillation (ENSO). There were significant positive correlations between the snow water equivalent (SWE) over the TP from November to next April and sea surface temperature (SST) in the Eastern Equatorial Pacific (EEP) in November from 1987 to 2005. SST in EEP in November is most significantly cor related with the TP-SWE in next April, which suggests an accumulative effect of the ENSO on the TP snow cover. Although El Niño conditions could bring anomalous snowfall over the TP by generating a wave train en tering the North African-Asian jet, it is questionable if this impact could change the thermal condition over the TP. There was almost no significant negative correlation between the SWE and TP surface temperature (representing the TP thermal condition) in winter. This suggests that the TP thermal condition hardly varies with the anomalous snowfall caused by this ENSO impact, despite some cooling effect of snowfall during the El Niño phase. On the contrary, preceding El Niño conditions tended to be associated with increasing TP surface temperature in May and there were significant positive correlations between SWE in April and TP surface temperature in May and June. ENSO might play a part in affecting TP thermal condition in a way that is quite different from the previ ous research. A plausible mechanism based on the relation of ENSO-TP thermal condition has been proposed. The mechanism explained the direct and indirect effects of ENSO on the TP thermal condition and role that the seasonal progress can play in this relation. The issues about snow cover aging and the impact of global warming, among others, were also included in the mechanism.","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"96 1","pages":"269-281"},"PeriodicalIF":2.4000,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2151/JMSJ.2018-032","citationCount":"15","resultStr":"{\"title\":\"Impact of ENSO on the Thermal Condition over the Tibetan Plateau\",\"authors\":\"Yafei Wang, Xiaoyu Xu\",\"doi\":\"10.2151/JMSJ.2018-032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed study aims to examine the relation between the Tibetan Plateau (TP) thermal condition and El Niño and Southern Oscillation (ENSO). There were significant positive correlations between the snow water equivalent (SWE) over the TP from November to next April and sea surface temperature (SST) in the Eastern Equatorial Pacific (EEP) in November from 1987 to 2005. SST in EEP in November is most significantly cor related with the TP-SWE in next April, which suggests an accumulative effect of the ENSO on the TP snow cover. Although El Niño conditions could bring anomalous snowfall over the TP by generating a wave train en tering the North African-Asian jet, it is questionable if this impact could change the thermal condition over the TP. There was almost no significant negative correlation between the SWE and TP surface temperature (representing the TP thermal condition) in winter. This suggests that the TP thermal condition hardly varies with the anomalous snowfall caused by this ENSO impact, despite some cooling effect of snowfall during the El Niño phase. On the contrary, preceding El Niño conditions tended to be associated with increasing TP surface temperature in May and there were significant positive correlations between SWE in April and TP surface temperature in May and June. ENSO might play a part in affecting TP thermal condition in a way that is quite different from the previ ous research. A plausible mechanism based on the relation of ENSO-TP thermal condition has been proposed. The mechanism explained the direct and indirect effects of ENSO on the TP thermal condition and role that the seasonal progress can play in this relation. The issues about snow cover aging and the impact of global warming, among others, were also included in the mechanism.\",\"PeriodicalId\":17476,\"journal\":{\"name\":\"Journal of the Meteorological Society of Japan\",\"volume\":\"96 1\",\"pages\":\"269-281\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2151/JMSJ.2018-032\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Meteorological Society of Japan\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/JMSJ.2018-032\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/JMSJ.2018-032","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Impact of ENSO on the Thermal Condition over the Tibetan Plateau
The proposed study aims to examine the relation between the Tibetan Plateau (TP) thermal condition and El Niño and Southern Oscillation (ENSO). There were significant positive correlations between the snow water equivalent (SWE) over the TP from November to next April and sea surface temperature (SST) in the Eastern Equatorial Pacific (EEP) in November from 1987 to 2005. SST in EEP in November is most significantly cor related with the TP-SWE in next April, which suggests an accumulative effect of the ENSO on the TP snow cover. Although El Niño conditions could bring anomalous snowfall over the TP by generating a wave train en tering the North African-Asian jet, it is questionable if this impact could change the thermal condition over the TP. There was almost no significant negative correlation between the SWE and TP surface temperature (representing the TP thermal condition) in winter. This suggests that the TP thermal condition hardly varies with the anomalous snowfall caused by this ENSO impact, despite some cooling effect of snowfall during the El Niño phase. On the contrary, preceding El Niño conditions tended to be associated with increasing TP surface temperature in May and there were significant positive correlations between SWE in April and TP surface temperature in May and June. ENSO might play a part in affecting TP thermal condition in a way that is quite different from the previ ous research. A plausible mechanism based on the relation of ENSO-TP thermal condition has been proposed. The mechanism explained the direct and indirect effects of ENSO on the TP thermal condition and role that the seasonal progress can play in this relation. The issues about snow cover aging and the impact of global warming, among others, were also included in the mechanism.
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.