聚类二元响应的β -二项模型的性能:与广义估计方程的比较

Q3 Mathematics
Seongah Im
{"title":"聚类二元响应的β -二项模型的性能:与广义估计方程的比较","authors":"Seongah Im","doi":"10.22237/jmasm/1619482380","DOIUrl":null,"url":null,"abstract":"This study examined performance of the beta-binomial model in comparison with GEE using clustered binary responses resulting in non-normal outcomes. Monte Carlo simulations were performed under varying intracluster correlations and sample sizes. The results showed that the beta-binomial model performed better for small sample, while GEE performed well under large sample.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the Beta-Binomial Model for Clustered Binary Responses: Comparison with Generalized Estimating Equations\",\"authors\":\"Seongah Im\",\"doi\":\"10.22237/jmasm/1619482380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examined performance of the beta-binomial model in comparison with GEE using clustered binary responses resulting in non-normal outcomes. Monte Carlo simulations were performed under varying intracluster correlations and sample sizes. The results showed that the beta-binomial model performed better for small sample, while GEE performed well under large sample.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1619482380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1619482380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究检验了β -二项模型的性能,并与使用集群二元反应导致非正常结果的GEE进行了比较。蒙特卡罗模拟在不同的簇内相关性和样本量下进行。结果表明,β -二项模型在小样本情况下表现较好,而GEE模型在大样本情况下表现较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of the Beta-Binomial Model for Clustered Binary Responses: Comparison with Generalized Estimating Equations
This study examined performance of the beta-binomial model in comparison with GEE using clustered binary responses resulting in non-normal outcomes. Monte Carlo simulations were performed under varying intracluster correlations and sample sizes. The results showed that the beta-binomial model performed better for small sample, while GEE performed well under large sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信