基于马尔科夫链蒙特卡罗估计的Logistic增长模型

Q3 Mathematics
Jaehwa Choi, Jinsong Chen, Jeffrey R. Harring
{"title":"基于马尔科夫链蒙特卡罗估计的Logistic增长模型","authors":"Jaehwa Choi, Jinsong Chen, Jeffrey R. Harring","doi":"10.22237/JMASM/1556669820","DOIUrl":null,"url":null,"abstract":"A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Logistic Growth Modeling with Markov Chain Monte Carlo Estimation\",\"authors\":\"Jaehwa Choi, Jinsong Chen, Jeffrey R. Harring\",\"doi\":\"10.22237/JMASM/1556669820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"18 1\",\"pages\":\"22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/JMASM/1556669820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1556669820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种新的增长建模方法,可以在没有约束和参数化的情况下拟合固有非线性(即逻辑)函数。通过仿真研究,探讨了在贝叶斯估计框架下马尔可夫链蒙特卡罗方法在测量场合的数量和时间以及样本量等操纵条件下估计logistic增长曲线模型的完全随机版本的可行性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logistic Growth Modeling with Markov Chain Monte Carlo Estimation
A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信