{"title":"(l,r)-Stirling数:一种组合方法","authors":"H. Belbachir, Yahia Djemmada","doi":"10.2298/fil2308587b","DOIUrl":null,"url":null,"abstract":"This work deals with a new generalization of r-Stirling numbers using l-tuple of permutations and partitions called (l,r)-Stirling numbers of both kinds. We study various properties of these numbers using combinatorial interpretations and symmetric functions. Also, we give a limit representation of the multiple zeta function using (l,r)-Stirling of the first kind.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"99 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The (l,r)-Stirling numbers: A combinatorial approach\",\"authors\":\"H. Belbachir, Yahia Djemmada\",\"doi\":\"10.2298/fil2308587b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with a new generalization of r-Stirling numbers using l-tuple of permutations and partitions called (l,r)-Stirling numbers of both kinds. We study various properties of these numbers using combinatorial interpretations and symmetric functions. Also, we give a limit representation of the multiple zeta function using (l,r)-Stirling of the first kind.\",\"PeriodicalId\":12305,\"journal\":{\"name\":\"Filomat\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Filomat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2308587b\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Filomat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2308587b","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The (l,r)-Stirling numbers: A combinatorial approach
This work deals with a new generalization of r-Stirling numbers using l-tuple of permutations and partitions called (l,r)-Stirling numbers of both kinds. We study various properties of these numbers using combinatorial interpretations and symmetric functions. Also, we give a limit representation of the multiple zeta function using (l,r)-Stirling of the first kind.