差分算子的orlicz - lacary双复序列空间

Pub Date : 2023-01-01 DOI:10.2298/fil2308421r
K. Raj, A. Esi, C. Sharma
{"title":"差分算子的orlicz - lacary双复序列空间","authors":"K. Raj, A. Esi, C. Sharma","doi":"10.2298/fil2308421r","DOIUrl":null,"url":null,"abstract":"In the present paper we introduce and study some lacunary difference bicomplex sequence spaces by means of Orlicz functions. We make an effort to study some algebraic and topological properties of these sequence spaces. We also show that these spaces are complete paranormed spaces. Further, some inclusion relations between these spaces and some interesting examples are established. Finally, we prove some results on modified complex Banach Algebra in the third section of the paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orlicz-Lacunary bicomplex sequence spaces of difference operators\",\"authors\":\"K. Raj, A. Esi, C. Sharma\",\"doi\":\"10.2298/fil2308421r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we introduce and study some lacunary difference bicomplex sequence spaces by means of Orlicz functions. We make an effort to study some algebraic and topological properties of these sequence spaces. We also show that these spaces are complete paranormed spaces. Further, some inclusion relations between these spaces and some interesting examples are established. Finally, we prove some results on modified complex Banach Algebra in the third section of the paper.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2308421r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2308421r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Orlicz函数,引入并研究了一些空白差分双复序列空间。我们努力研究这些序列空间的一些代数和拓扑性质。我们还证明了这些空间是完全副形空间。进一步,建立了这些空间之间的包含关系,并给出了一些有趣的例子。最后,在论文的第三部分,我们证明了一些关于修正复Banach代数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Orlicz-Lacunary bicomplex sequence spaces of difference operators
In the present paper we introduce and study some lacunary difference bicomplex sequence spaces by means of Orlicz functions. We make an effort to study some algebraic and topological properties of these sequence spaces. We also show that these spaces are complete paranormed spaces. Further, some inclusion relations between these spaces and some interesting examples are established. Finally, we prove some results on modified complex Banach Algebra in the third section of the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信