关于近似双投影和近似双平面Banach代数

Pub Date : 2023-01-01 DOI:10.2298/fil2308295s
A. Sahami, A. Bodaghi
{"title":"关于近似双投影和近似双平面Banach代数","authors":"A. Sahami, A. Bodaghi","doi":"10.2298/fil2308295s","DOIUrl":null,"url":null,"abstract":"In this paper, we study the approximate biprojectivity and the approximate biflatness of a Banach algebra A and find some relations between theses concepts with ?-amenability and ? -contractibility, where ? is a character on A. Among other things, we show that ?-Lau product algebra L1(G) ?? A(G) is approximately biprojective if and only if G is finite, where L1(G) and A(G) are the group algebra and the Fourier algebra of a locally compact group G, respectively. We also characterize approximately biprojective and approximately biflat semigroup algebras associated with the inverse semigroups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On approximately biprojective and approximately biflat Banach algebras\",\"authors\":\"A. Sahami, A. Bodaghi\",\"doi\":\"10.2298/fil2308295s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the approximate biprojectivity and the approximate biflatness of a Banach algebra A and find some relations between theses concepts with ?-amenability and ? -contractibility, where ? is a character on A. Among other things, we show that ?-Lau product algebra L1(G) ?? A(G) is approximately biprojective if and only if G is finite, where L1(G) and A(G) are the group algebra and the Fourier algebra of a locally compact group G, respectively. We also characterize approximately biprojective and approximately biflat semigroup algebras associated with the inverse semigroups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2308295s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2308295s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类Banach代数a的近似双投影性和近似双平面性,并得到了这些概念之间的关系。-收缩性,在哪里?是a上的一个字符。除此之外,我们证明了?-劳积代数L1(G) ??当且仅当G有限时,A(G)是近似双投影的,其中L1(G)和A(G)分别是局部紧群G的群代数和傅里叶代数。我们还刻画了与逆半群相关的近似双投影半群和近似双平面半群代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On approximately biprojective and approximately biflat Banach algebras
In this paper, we study the approximate biprojectivity and the approximate biflatness of a Banach algebra A and find some relations between theses concepts with ?-amenability and ? -contractibility, where ? is a character on A. Among other things, we show that ?-Lau product algebra L1(G) ?? A(G) is approximately biprojective if and only if G is finite, where L1(G) and A(G) are the group algebra and the Fourier algebra of a locally compact group G, respectively. We also characterize approximately biprojective and approximately biflat semigroup algebras associated with the inverse semigroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信