E. Braga, L. Lucena, A. Almeida, M. Pires, J. do Nascimento, B. Sutti, G. Berbel, V. Chiozzini
{"title":"河口环境和pH值变化:自然极限和酸化对磷生物利用度影响的实验观察","authors":"E. Braga, L. Lucena, A. Almeida, M. Pires, J. do Nascimento, B. Sutti, G. Berbel, V. Chiozzini","doi":"10.21577/0100-4042.20230054","DOIUrl":null,"url":null,"abstract":"THE ESTUARINE ENVIRONMENT AND pH VARIATION: NATURAL LIMTS AND EXPERIMENTAL OBSERVATION OF THE ACIDIFICATION EFFECT ON PHOSPHORUS BIOAVAILABILITY. This study shows the variation of pH in the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC). Data from 3 years (2019, 2021, 2022) were obtained in 17 points presenting the following ranges: temperature (14.88-27.05 ºC), pH (7.16-8.40) and DIP (0.20-11.28 µmol L-1) along a saline gradient (0.05-32.09) under different hydrodynamics, biogeochemical processes and anthropogenic influence. The pH buffering capacity due to the presence of weak acid salts in saline water (S ≥ 30) was associated to the lowest DIP, decreasing with low salinity values, confirming the direct correlation among salinity and pH. The highest temperatures in the winter of 2021, corroborated with the abnormal climate event in that year. An in vitro experiment showed results of the interaction of PID and sediments with different textures, with and without the presence of the benthic microbiota under a considerable decreasing of the pH (acidification) in relation to the natural condition of this environment. The P sediment flux characterized Iguape sector as a P sink with or without biota, Ararapira sector as a P source with biota and Cananéia, as P source without biota. The salt water buffered the pH and sediment buffered DIP both associated to the biogeochemical and hydrodynamic processes contribute to the homeostasis in the system.","PeriodicalId":49641,"journal":{"name":"Quimica Nova","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"O AMBIENTE ESTUARINO E A VARIAÇÃO DE pH: LIMITES NATURAIS E OBSERVAÇÃO EXPERIMENTAL DO EFEITO DA ACIDIFICAÇÃO SOBRE A BIODISPONIBILIDADE DE FÓSFORO\",\"authors\":\"E. Braga, L. Lucena, A. Almeida, M. Pires, J. do Nascimento, B. Sutti, G. Berbel, V. Chiozzini\",\"doi\":\"10.21577/0100-4042.20230054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"THE ESTUARINE ENVIRONMENT AND pH VARIATION: NATURAL LIMTS AND EXPERIMENTAL OBSERVATION OF THE ACIDIFICATION EFFECT ON PHOSPHORUS BIOAVAILABILITY. This study shows the variation of pH in the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC). Data from 3 years (2019, 2021, 2022) were obtained in 17 points presenting the following ranges: temperature (14.88-27.05 ºC), pH (7.16-8.40) and DIP (0.20-11.28 µmol L-1) along a saline gradient (0.05-32.09) under different hydrodynamics, biogeochemical processes and anthropogenic influence. The pH buffering capacity due to the presence of weak acid salts in saline water (S ≥ 30) was associated to the lowest DIP, decreasing with low salinity values, confirming the direct correlation among salinity and pH. The highest temperatures in the winter of 2021, corroborated with the abnormal climate event in that year. An in vitro experiment showed results of the interaction of PID and sediments with different textures, with and without the presence of the benthic microbiota under a considerable decreasing of the pH (acidification) in relation to the natural condition of this environment. The P sediment flux characterized Iguape sector as a P sink with or without biota, Ararapira sector as a P source with biota and Cananéia, as P source without biota. The salt water buffered the pH and sediment buffered DIP both associated to the biogeochemical and hydrodynamic processes contribute to the homeostasis in the system.\",\"PeriodicalId\":49641,\"journal\":{\"name\":\"Quimica Nova\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quimica Nova\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.21577/0100-4042.20230054\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quimica Nova","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.21577/0100-4042.20230054","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
O AMBIENTE ESTUARINO E A VARIAÇÃO DE pH: LIMITES NATURAIS E OBSERVAÇÃO EXPERIMENTAL DO EFEITO DA ACIDIFICAÇÃO SOBRE A BIODISPONIBILIDADE DE FÓSFORO
THE ESTUARINE ENVIRONMENT AND pH VARIATION: NATURAL LIMTS AND EXPERIMENTAL OBSERVATION OF THE ACIDIFICATION EFFECT ON PHOSPHORUS BIOAVAILABILITY. This study shows the variation of pH in the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC). Data from 3 years (2019, 2021, 2022) were obtained in 17 points presenting the following ranges: temperature (14.88-27.05 ºC), pH (7.16-8.40) and DIP (0.20-11.28 µmol L-1) along a saline gradient (0.05-32.09) under different hydrodynamics, biogeochemical processes and anthropogenic influence. The pH buffering capacity due to the presence of weak acid salts in saline water (S ≥ 30) was associated to the lowest DIP, decreasing with low salinity values, confirming the direct correlation among salinity and pH. The highest temperatures in the winter of 2021, corroborated with the abnormal climate event in that year. An in vitro experiment showed results of the interaction of PID and sediments with different textures, with and without the presence of the benthic microbiota under a considerable decreasing of the pH (acidification) in relation to the natural condition of this environment. The P sediment flux characterized Iguape sector as a P sink with or without biota, Ararapira sector as a P source with biota and Cananéia, as P source without biota. The salt water buffered the pH and sediment buffered DIP both associated to the biogeochemical and hydrodynamic processes contribute to the homeostasis in the system.
期刊介绍:
Química Nova publishes in portuguese, spanish and english, original research articles, revisions, technical notes and articles about education in chemistry. All the manuscripts submitted to QN are evaluated by, at least, two reviewers (from Brazil and abroad) of recognized expertise in the field of chemistry involved in the manuscript. The Editorial Council can be eventually asked to review manuscripts. Editors are responsible for the final edition of QN.