具有一般边界条件的Klein-Gordon s波方程有限系统的谱性质

Pub Date : 2023-01-01 DOI:10.2298/fil2306907a
E. Arpat, N. Yokuş, N. Coskun
{"title":"具有一般边界条件的Klein-Gordon s波方程有限系统的谱性质","authors":"E. Arpat, N. Yokuş, N. Coskun","doi":"10.2298/fil2306907a","DOIUrl":null,"url":null,"abstract":"The spectral characteristics of the operator L is studied where L is defined within the Hilbert space L2(R+, CV) given by a finite system of Klein-Gordon type differential equations and boundary condition at general form. The research of the Klein-Gordon type operator continues to be an important topic for researchers due to the range of applicability of them in numerous branches of mathematics and quantum physics. Contrary to the previous works, we take the potential as complex valued and generalize the problem to the matrix Klein-Gordon operator case. The spectrum is derived by determining the Jost function and resolvent operator of the prescribed operator. Further, we provide the conditions that must be met for the certain quantitative properties of the spectrum.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral properties of the finite system of Klein-Gordon S-wave equations with general boundary condition\",\"authors\":\"E. Arpat, N. Yokuş, N. Coskun\",\"doi\":\"10.2298/fil2306907a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral characteristics of the operator L is studied where L is defined within the Hilbert space L2(R+, CV) given by a finite system of Klein-Gordon type differential equations and boundary condition at general form. The research of the Klein-Gordon type operator continues to be an important topic for researchers due to the range of applicability of them in numerous branches of mathematics and quantum physics. Contrary to the previous works, we take the potential as complex valued and generalize the problem to the matrix Klein-Gordon operator case. The spectrum is derived by determining the Jost function and resolvent operator of the prescribed operator. Further, we provide the conditions that must be met for the certain quantitative properties of the spectrum.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2306907a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2306907a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了算子L在Hilbert空间L2(R+, CV)中的谱特征,该空间由一般形式的Klein-Gordon型微分方程和边界条件有限系统给出。由于Klein-Gordon型算子在数学和量子物理的许多分支中具有广泛的适用性,其研究一直是研究人员的一个重要课题。与以往的工作相反,我们将势作为复值,并将问题推广到矩阵Klein-Gordon算子的情况。谱是通过确定约斯特函数和规定算子的解析算子推导出来的。此外,我们还提供了谱的某些定量性质必须满足的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Spectral properties of the finite system of Klein-Gordon S-wave equations with general boundary condition
The spectral characteristics of the operator L is studied where L is defined within the Hilbert space L2(R+, CV) given by a finite system of Klein-Gordon type differential equations and boundary condition at general form. The research of the Klein-Gordon type operator continues to be an important topic for researchers due to the range of applicability of them in numerous branches of mathematics and quantum physics. Contrary to the previous works, we take the potential as complex valued and generalize the problem to the matrix Klein-Gordon operator case. The spectrum is derived by determining the Jost function and resolvent operator of the prescribed operator. Further, we provide the conditions that must be met for the certain quantitative properties of the spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信