{"title":"加权Bergman空间上的一类酉算子","authors":"N. Das, Swarupa Roy","doi":"10.2298/fil2307013d","DOIUrl":null,"url":null,"abstract":"In this paper we consider a class of weighted composition operators defined on the weighted Bergman spaces L2a (dA?) where D is the open unit disk in C and dA?(z) = (? + 1)(1 ? |z|2)?dA(z), ? > ?1 and dA(z) is the area measure on D. These operators are also self-adjoint and unitary. We establish here that a bounded linear operator S from L2a (dA?) into itself commutes with all the composition operators C(?) a , a ? D, if and only if B?S satisfies certain averaging condition. Here B?S denotes the generalized Berezin transform of the bounded linear operator S from L2a (dA?) into itself, C(?) a f = ( f ??a), f ? L2a (dA?) and ? ? Aut(D). Applications of the result are also discussed. Further, we have shown that ifMis a subspace of L?(D) and if for ? ? M, the Toeplitz operator T(?) ? represents a multiplication operator on a closed subspace S ? L2a (dA?), then ? is bounded analytic on D. Similarly if q ? L?(D) and Bn is a finite Blaschke product and M(?) q ( Range C(?) Bn) ? L2a (dA?), then q ? H?(D). Further, we have shown that if ? ? Aut(D), then N = {q ? L2a (dA?) : M(?) q (Range C(?)?) ? L2a (dA?)} = H?(D) if and only if ? is a finite Blaschke product. Here M(?)?, T(?)? , C(?)? denote the multiplication operator, the Toeplitz operator and the composition operator defined on L2a (dA?) with symbol ? respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of unitary operators on weighted Bergman spaces\",\"authors\":\"N. Das, Swarupa Roy\",\"doi\":\"10.2298/fil2307013d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a class of weighted composition operators defined on the weighted Bergman spaces L2a (dA?) where D is the open unit disk in C and dA?(z) = (? + 1)(1 ? |z|2)?dA(z), ? > ?1 and dA(z) is the area measure on D. These operators are also self-adjoint and unitary. We establish here that a bounded linear operator S from L2a (dA?) into itself commutes with all the composition operators C(?) a , a ? D, if and only if B?S satisfies certain averaging condition. Here B?S denotes the generalized Berezin transform of the bounded linear operator S from L2a (dA?) into itself, C(?) a f = ( f ??a), f ? L2a (dA?) and ? ? Aut(D). Applications of the result are also discussed. Further, we have shown that ifMis a subspace of L?(D) and if for ? ? M, the Toeplitz operator T(?) ? represents a multiplication operator on a closed subspace S ? L2a (dA?), then ? is bounded analytic on D. Similarly if q ? L?(D) and Bn is a finite Blaschke product and M(?) q ( Range C(?) Bn) ? L2a (dA?), then q ? H?(D). Further, we have shown that if ? ? Aut(D), then N = {q ? L2a (dA?) : M(?) q (Range C(?)?) ? L2a (dA?)} = H?(D) if and only if ? is a finite Blaschke product. Here M(?)?, T(?)? , C(?)? denote the multiplication operator, the Toeplitz operator and the composition operator defined on L2a (dA?) with symbol ? respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2307013d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2307013d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑了一类定义在加权Bergman空间L2a (dA?)上的加权复合算子,其中D是C中的开放单位盘,dA?(z) = (?)+ 1 (1 ?| | 2 z) ? dA (z) ?> ?1, dA(z)是d上的面积测度,这些算子也是自伴随的酉算子。我们在这里建立一个有界线性算子S从L2a (dA?)到它自身与所有复合算子C(?) a a ?D,当且仅当B?S满足一定的平均条件。B ?S表示有界线性算子S从L2a (dA?)到自身的广义Berezin变换,C(?) a f = (f ?a), f ?L2a (dA?)和?? Aut (D)。并对结果的应用进行了讨论。进一步,我们证明了if是L?(D)的一个子空间,如果为?? M, Toeplitz算子T(?) ?表示闭子空间S上的乘法算子?L2a (dA?)在d上是有界解析的,同理,如果q ?L?(D)和Bn是有限Blaschke积,M(?) q(范围C(?))Bn) ?L2a (dA?),然后q ?H ? (D)。此外,我们已经证明,如果?? Aut(D),则N = {q ?L2a (dA?): M(?) q(范围C(?)?) ?L2a (dA?)} = H?(D)当且仅当?是有限Blaschke积。这里M (?) ?T(?)吗?C(?)吗?用符号?表示在L2a (dA?)上定义的乘法运算符、Toeplitz运算符和复合运算符。分别。
On a class of unitary operators on weighted Bergman spaces
In this paper we consider a class of weighted composition operators defined on the weighted Bergman spaces L2a (dA?) where D is the open unit disk in C and dA?(z) = (? + 1)(1 ? |z|2)?dA(z), ? > ?1 and dA(z) is the area measure on D. These operators are also self-adjoint and unitary. We establish here that a bounded linear operator S from L2a (dA?) into itself commutes with all the composition operators C(?) a , a ? D, if and only if B?S satisfies certain averaging condition. Here B?S denotes the generalized Berezin transform of the bounded linear operator S from L2a (dA?) into itself, C(?) a f = ( f ??a), f ? L2a (dA?) and ? ? Aut(D). Applications of the result are also discussed. Further, we have shown that ifMis a subspace of L?(D) and if for ? ? M, the Toeplitz operator T(?) ? represents a multiplication operator on a closed subspace S ? L2a (dA?), then ? is bounded analytic on D. Similarly if q ? L?(D) and Bn is a finite Blaschke product and M(?) q ( Range C(?) Bn) ? L2a (dA?), then q ? H?(D). Further, we have shown that if ? ? Aut(D), then N = {q ? L2a (dA?) : M(?) q (Range C(?)?) ? L2a (dA?)} = H?(D) if and only if ? is a finite Blaschke product. Here M(?)?, T(?)? , C(?)? denote the multiplication operator, the Toeplitz operator and the composition operator defined on L2a (dA?) with symbol ? respectively.