伯努利数的一个新的组合恒等式及其在拉马努金调和数展开中的应用

Pub Date : 2023-01-01 DOI:10.2298/fil2306733x
Conglei Xu, Dechao Li
{"title":"伯努利数的一个新的组合恒等式及其在拉马努金调和数展开中的应用","authors":"Conglei Xu, Dechao Li","doi":"10.2298/fil2306733x","DOIUrl":null,"url":null,"abstract":"We establish a new combinatorial identity related to the well-known Bernoulli numbers, which generalizes the result due to Feng and Wang. By means of the identity, we find a recursive formula for successively determining the coefficients of Ramanujan?s asymptotic expansion for the generalized harmonic numbers","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new combinatorial identity for Bernoulli numbers and its application in Ramanujan’s expansion of harmonic numbers\",\"authors\":\"Conglei Xu, Dechao Li\",\"doi\":\"10.2298/fil2306733x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a new combinatorial identity related to the well-known Bernoulli numbers, which generalizes the result due to Feng and Wang. By means of the identity, we find a recursive formula for successively determining the coefficients of Ramanujan?s asymptotic expansion for the generalized harmonic numbers\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2306733x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2306733x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个新的与伯努利数相关的组合恒等式,推广了Feng和Wang的结果。利用恒等式,我们找到了一个递推公式,用于连续确定拉马努金系数?广义调和数的S渐近展开
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A new combinatorial identity for Bernoulli numbers and its application in Ramanujan’s expansion of harmonic numbers
We establish a new combinatorial identity related to the well-known Bernoulli numbers, which generalizes the result due to Feng and Wang. By means of the identity, we find a recursive formula for successively determining the coefficients of Ramanujan?s asymptotic expansion for the generalized harmonic numbers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信