{"title":"伯努利数的一个新的组合恒等式及其在拉马努金调和数展开中的应用","authors":"Conglei Xu, Dechao Li","doi":"10.2298/fil2306733x","DOIUrl":null,"url":null,"abstract":"We establish a new combinatorial identity related to the well-known Bernoulli numbers, which generalizes the result due to Feng and Wang. By means of the identity, we find a recursive formula for successively determining the coefficients of Ramanujan?s asymptotic expansion for the generalized harmonic numbers","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"39 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new combinatorial identity for Bernoulli numbers and its application in Ramanujan’s expansion of harmonic numbers\",\"authors\":\"Conglei Xu, Dechao Li\",\"doi\":\"10.2298/fil2306733x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a new combinatorial identity related to the well-known Bernoulli numbers, which generalizes the result due to Feng and Wang. By means of the identity, we find a recursive formula for successively determining the coefficients of Ramanujan?s asymptotic expansion for the generalized harmonic numbers\",\"PeriodicalId\":12305,\"journal\":{\"name\":\"Filomat\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Filomat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2306733x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Filomat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2306733x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A new combinatorial identity for Bernoulli numbers and its application in Ramanujan’s expansion of harmonic numbers
We establish a new combinatorial identity related to the well-known Bernoulli numbers, which generalizes the result due to Feng and Wang. By means of the identity, we find a recursive formula for successively determining the coefficients of Ramanujan?s asymptotic expansion for the generalized harmonic numbers