保持e−2x的bernstein - standu算子的近似性质

Pub Date : 2023-01-01 DOI:10.2298/fil2305523u
F. Usta, M. Mursaleen, İbrahim Çakır
{"title":"保持e−2x的bernstein - standu算子的近似性质","authors":"F. Usta, M. Mursaleen, İbrahim Çakır","doi":"10.2298/fil2305523u","DOIUrl":null,"url":null,"abstract":"Bernstein-Stancu operators are one of the most powerful tool that can be used in approximation theory. In this manuscript, we propose a new construction of Bernstein-Stancu operators which preserve the constant and e?2x, x > 0. In this direction, the approximation properties of this newly defined operators have been examined in the sense of different function spaces. In addition to these, we present the Voronovskaya type theorem for this operators. At the end, we provide two computational examples to demonstrate that the new operator is an approximation procedure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation properties of Bernstein-Stancu operators preserving e−2x\",\"authors\":\"F. Usta, M. Mursaleen, İbrahim Çakır\",\"doi\":\"10.2298/fil2305523u\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bernstein-Stancu operators are one of the most powerful tool that can be used in approximation theory. In this manuscript, we propose a new construction of Bernstein-Stancu operators which preserve the constant and e?2x, x > 0. In this direction, the approximation properties of this newly defined operators have been examined in the sense of different function spaces. In addition to these, we present the Voronovskaya type theorem for this operators. At the end, we provide two computational examples to demonstrate that the new operator is an approximation procedure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2305523u\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2305523u","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伯恩斯坦-斯坦库算子是逼近理论中最有力的工具之一。在本文中,我们提出了一种新的伯恩斯坦-斯坦库算子的构造,它保持常数和e?2x x > 0。在这个方向上,我们在不同函数空间的意义上考察了这些新定义算子的近似性质。此外,我们给出了这类算子的Voronovskaya型定理。最后,我们给出了两个计算实例来证明新算子是一个近似过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Approximation properties of Bernstein-Stancu operators preserving e−2x
Bernstein-Stancu operators are one of the most powerful tool that can be used in approximation theory. In this manuscript, we propose a new construction of Bernstein-Stancu operators which preserve the constant and e?2x, x > 0. In this direction, the approximation properties of this newly defined operators have been examined in the sense of different function spaces. In addition to these, we present the Voronovskaya type theorem for this operators. At the end, we provide two computational examples to demonstrate that the new operator is an approximation procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信