{"title":"保持e−2x的bernstein - standu算子的近似性质","authors":"F. Usta, M. Mursaleen, İbrahim Çakır","doi":"10.2298/fil2305523u","DOIUrl":null,"url":null,"abstract":"Bernstein-Stancu operators are one of the most powerful tool that can be used in approximation theory. In this manuscript, we propose a new construction of Bernstein-Stancu operators which preserve the constant and e?2x, x > 0. In this direction, the approximation properties of this newly defined operators have been examined in the sense of different function spaces. In addition to these, we present the Voronovskaya type theorem for this operators. At the end, we provide two computational examples to demonstrate that the new operator is an approximation procedure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation properties of Bernstein-Stancu operators preserving e−2x\",\"authors\":\"F. Usta, M. Mursaleen, İbrahim Çakır\",\"doi\":\"10.2298/fil2305523u\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bernstein-Stancu operators are one of the most powerful tool that can be used in approximation theory. In this manuscript, we propose a new construction of Bernstein-Stancu operators which preserve the constant and e?2x, x > 0. In this direction, the approximation properties of this newly defined operators have been examined in the sense of different function spaces. In addition to these, we present the Voronovskaya type theorem for this operators. At the end, we provide two computational examples to demonstrate that the new operator is an approximation procedure.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2305523u\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2305523u","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
伯恩斯坦-斯坦库算子是逼近理论中最有力的工具之一。在本文中,我们提出了一种新的伯恩斯坦-斯坦库算子的构造,它保持常数和e?2x x > 0。在这个方向上,我们在不同函数空间的意义上考察了这些新定义算子的近似性质。此外,我们给出了这类算子的Voronovskaya型定理。最后,我们给出了两个计算实例来证明新算子是一个近似过程。
Approximation properties of Bernstein-Stancu operators preserving e−2x
Bernstein-Stancu operators are one of the most powerful tool that can be used in approximation theory. In this manuscript, we propose a new construction of Bernstein-Stancu operators which preserve the constant and e?2x, x > 0. In this direction, the approximation properties of this newly defined operators have been examined in the sense of different function spaces. In addition to these, we present the Voronovskaya type theorem for this operators. At the end, we provide two computational examples to demonstrate that the new operator is an approximation procedure.