模b -度量空间中广义Suzuki-Proinov型(α,Z*E) -缩

Pub Date : 2023-01-01 DOI:10.2298/fil2304207b
Abdurrahman Büyükkaya, Andreea Fulg, Mahpeyker Özturk
{"title":"模b -度量空间中广义Suzuki-Proinov型(α,Z*E) -缩","authors":"Abdurrahman Büyükkaya, Andreea Fulg, Mahpeyker Özturk","doi":"10.2298/fil2304207b","DOIUrl":null,"url":null,"abstract":"This paper?s objective is to put forward anewkind of E?type contraction, which includes rational expression, by considering Proinov type functions and CG?simulation functions. This type of contraction is termed as a Suzuki-Proinov type generalized (?,Z* E)?contraction mapping. Further, some common fixed point theorems using these new mappings, which are triangular ??admissible pairs, are demonstrated in the setting of modular b?metric space. Besides, the given example indicates the applicability and validity of the outcomes of this study.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On generalized Suzuki-Proinov type (α,Z*E)−contractions in modular b−metric spaces\",\"authors\":\"Abdurrahman Büyükkaya, Andreea Fulg, Mahpeyker Özturk\",\"doi\":\"10.2298/fil2304207b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper?s objective is to put forward anewkind of E?type contraction, which includes rational expression, by considering Proinov type functions and CG?simulation functions. This type of contraction is termed as a Suzuki-Proinov type generalized (?,Z* E)?contraction mapping. Further, some common fixed point theorems using these new mappings, which are triangular ??admissible pairs, are demonstrated in the setting of modular b?metric space. Besides, the given example indicates the applicability and validity of the outcomes of this study.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2304207b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2304207b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这篇论文吗?我们的目标是提出一种新的E?通过考虑Proinov型函数和CG?模拟功能。这种类型的收缩被称为广义的Suzuki-Proinov型(?, Z)吗?收缩映射。进一步,利用这些新映射得到了一些常见的不动点定理,它们是三角形的??可容许的对,在模b?度量空间。通过实例验证了本文研究结果的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On generalized Suzuki-Proinov type (α,Z*E)−contractions in modular b−metric spaces
This paper?s objective is to put forward anewkind of E?type contraction, which includes rational expression, by considering Proinov type functions and CG?simulation functions. This type of contraction is termed as a Suzuki-Proinov type generalized (?,Z* E)?contraction mapping. Further, some common fixed point theorems using these new mappings, which are triangular ??admissible pairs, are demonstrated in the setting of modular b?metric space. Besides, the given example indicates the applicability and validity of the outcomes of this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信