{"title":"具有新的数值半径上界的Cauchy-Schwarz不等式的改进","authors":"Mohammed Al-Dolat, Imad Jaradat","doi":"10.2298/fil2303971a","DOIUrl":null,"url":null,"abstract":"This present work aims to ameliorate the celebrated Cauchy-Schwarz inequality and provide several new consequences associated with the numerical radius upper bounds of Hilbert space operators. More precisely, for arbitrary a, b ? H and ? ? 0, we show that |?a,b?|2 ? 1 ? + 1 ?a??b?|?a, b?| + ?/?+1 ?a?2?b?2 ? ?a?2?b?2. As a consequence, we provide several new upper bounds for the numerical radius that refine and generalize some of Kittaneh?s results in [A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003;158:11-17] and [Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 2020;23:1117-1125], respectively. In particular, for arbitrary A, B ? B(H) and ? ? 0, we show the following sharp upper bound w2 (B*A) ? 1/2?+2 ?|A|2 + B|2?w(B*A)+ ?/2?+2 ?|A|4 + |B?4, with equality holds when A=B= (0100). It is also worth mentioning here that some specific values of ? ? 0 provide more accurate estimates for the numerical radius. Finally, some related upper bounds are also provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds\",\"authors\":\"Mohammed Al-Dolat, Imad Jaradat\",\"doi\":\"10.2298/fil2303971a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This present work aims to ameliorate the celebrated Cauchy-Schwarz inequality and provide several new consequences associated with the numerical radius upper bounds of Hilbert space operators. More precisely, for arbitrary a, b ? H and ? ? 0, we show that |?a,b?|2 ? 1 ? + 1 ?a??b?|?a, b?| + ?/?+1 ?a?2?b?2 ? ?a?2?b?2. As a consequence, we provide several new upper bounds for the numerical radius that refine and generalize some of Kittaneh?s results in [A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003;158:11-17] and [Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 2020;23:1117-1125], respectively. In particular, for arbitrary A, B ? B(H) and ? ? 0, we show the following sharp upper bound w2 (B*A) ? 1/2?+2 ?|A|2 + B|2?w(B*A)+ ?/2?+2 ?|A|4 + |B?4, with equality holds when A=B= (0100). It is also worth mentioning here that some specific values of ? ? 0 provide more accurate estimates for the numerical radius. Finally, some related upper bounds are also provided.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2303971a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2303971a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文旨在改进著名的Cauchy-Schwarz不等式,并提供与Hilbert空间算子数值半径上界相关的几个新结果。更准确地说,对于任意的a b ?H和?? 0,我们显示|?a,b?| 2 ?1 ? + 1 ?a? b? b| ?a、b吗?| + /?2 + 1 ? ? ? ?2呢?一个2 ? b ? 2。因此,我们提供了几个新的数值半径上界,这些上界改进和推广了Kittaneh?得到了一个数值半径不等式和Frobenius伴矩阵的数值半径估计。[j] .数学学报,2003;58(1):11-17。数学。不平等的。[app . 2020;23:1117-1125]。特别是对于任意的A B ?B(H)和?? 0,我们给出下面的明显上界w2 (B*A) ?半吗?+2 ?|A|2 + B|2?w(B*A)+ ?/2?+2 ?| a |4 + | b ?4、当A=B=(0100)时等式成立。这里还值得一提的是?? 0为数值半径提供了更准确的估计。最后给出了相关的上界。
A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds
This present work aims to ameliorate the celebrated Cauchy-Schwarz inequality and provide several new consequences associated with the numerical radius upper bounds of Hilbert space operators. More precisely, for arbitrary a, b ? H and ? ? 0, we show that |?a,b?|2 ? 1 ? + 1 ?a??b?|?a, b?| + ?/?+1 ?a?2?b?2 ? ?a?2?b?2. As a consequence, we provide several new upper bounds for the numerical radius that refine and generalize some of Kittaneh?s results in [A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003;158:11-17] and [Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 2020;23:1117-1125], respectively. In particular, for arbitrary A, B ? B(H) and ? ? 0, we show the following sharp upper bound w2 (B*A) ? 1/2?+2 ?|A|2 + B|2?w(B*A)+ ?/2?+2 ?|A|4 + |B?4, with equality holds when A=B= (0100). It is also worth mentioning here that some specific values of ? ? 0 provide more accurate estimates for the numerical radius. Finally, some related upper bounds are also provided.