复双曲双平面格拉斯曼型实超曲面上的Reeb lie导数

Pub Date : 2023-01-01 DOI:10.2298/fil2303915p
Eunmi Pak, G. Kim
{"title":"复双曲双平面格拉斯曼型实超曲面上的Reeb lie导数","authors":"Eunmi Pak, G. Kim","doi":"10.2298/fil2303915p","DOIUrl":null,"url":null,"abstract":"In complex two-plane Grassmannians G2(Cm+2) = SU2+m/S(U2?Um), it is known that a real hypersurface satisfying the condition (L?(k)?R?)Y = (L?R?)Y is locally congruent to an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2). In this paper, as an abient space, we consider a complex hyperbolic two-plane Grassmannian SU2,m/S(U2?Um) and give a complete classification of Hopf real hypersurfaces in SU2,m/S(U2?Um) with the above condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reeb lie derivatives on real hypersurfaces in complex hyperbolic two-plane Grassmannians\",\"authors\":\"Eunmi Pak, G. Kim\",\"doi\":\"10.2298/fil2303915p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex two-plane Grassmannians G2(Cm+2) = SU2+m/S(U2?Um), it is known that a real hypersurface satisfying the condition (L?(k)?R?)Y = (L?R?)Y is locally congruent to an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2). In this paper, as an abient space, we consider a complex hyperbolic two-plane Grassmannian SU2,m/S(U2?Um) and give a complete classification of Hopf real hypersurfaces in SU2,m/S(U2?Um) with the above condition.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2303915p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2303915p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复两平面格拉斯曼曲面G2(Cm+2) = SU2+m/S(U2?Um)中,已知实超曲面满足条件(L?(k)?R?)Y = (l ? r ?)在G2(Cm+2)中,Y局部与完全测地线G2(Cm+1)周围的管的开口部分相等。本文将复双曲型两平面Grassmannian SU2,m/S(U2?Um)作为一个不存在空间,利用上述条件给出了SU2,m/S(U2?Um)上的Hopf实超曲面的完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Reeb lie derivatives on real hypersurfaces in complex hyperbolic two-plane Grassmannians
In complex two-plane Grassmannians G2(Cm+2) = SU2+m/S(U2?Um), it is known that a real hypersurface satisfying the condition (L?(k)?R?)Y = (L?R?)Y is locally congruent to an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2). In this paper, as an abient space, we consider a complex hyperbolic two-plane Grassmannian SU2,m/S(U2?Um) and give a complete classification of Hopf real hypersurfaces in SU2,m/S(U2?Um) with the above condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信