非线性时滞分数阶微分方程积分边值问题的正解

Pub Date : 2023-01-01 DOI:10.2298/fil2302567c
Tawanda Chakuvinga, F. Topal
{"title":"非线性时滞分数阶微分方程积分边值问题的正解","authors":"Tawanda Chakuvinga, F. Topal","doi":"10.2298/fil2302567c","DOIUrl":null,"url":null,"abstract":"In this study, we consider integral boundary value problems of nonlinear fractional differential equations with finite delay. Existence results of positive solutions for the problems are obtained on the basis of the Guo-Krasnoselskii theorem and the Leggett-Williams fixed point theorem. Comprehensive examples follow the main results in the respective sections.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive solutions for integral boundary value problems of nonlinear fractional differential equations with delay\",\"authors\":\"Tawanda Chakuvinga, F. Topal\",\"doi\":\"10.2298/fil2302567c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we consider integral boundary value problems of nonlinear fractional differential equations with finite delay. Existence results of positive solutions for the problems are obtained on the basis of the Guo-Krasnoselskii theorem and the Leggett-Williams fixed point theorem. Comprehensive examples follow the main results in the respective sections.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2302567c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2302567c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究有限时滞非线性分数阶微分方程的积分边值问题。利用Guo-Krasnoselskii定理和Leggett-Williams不动点定理,得到了问题正解的存在性结果。在各部分的主要结果之后是综合示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Positive solutions for integral boundary value problems of nonlinear fractional differential equations with delay
In this study, we consider integral boundary value problems of nonlinear fractional differential equations with finite delay. Existence results of positive solutions for the problems are obtained on the basis of the Guo-Krasnoselskii theorem and the Leggett-Williams fixed point theorem. Comprehensive examples follow the main results in the respective sections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信