c和c中q-欧拉矩阵的定义域及其点谱

Pub Date : 2023-01-01 DOI:10.2298/fil2302643y
Taja Yaying, B. Hazarika, Liquan Mei
{"title":"c和c中q-欧拉矩阵的定义域及其点谱","authors":"Taja Yaying, B. Hazarika, Liquan Mei","doi":"10.2298/fil2302643y","DOIUrl":null,"url":null,"abstract":"We introduce new Banach spaces e?,? 0 (q) and e?,? c (q) defined as the domain of generalized q-Euler matrix E?,?(q) in the spaces c0 and c, respectively. Some topological properties and inclusion relations related to the newly defined spaces are exhibited. We determine the bases and obtain K?the duals of the spaces e?,? 0 (q) and e?,? c (q). We characterize certain matrix mappings from the spaces e?,? 0 (q) and e?,? c (q) to the space S ? {??, c, c0, ?1, bs, cs, cs0}. We compute necessary and sufficient conditions for a matrix operator to be compact from the space e?,? 0 (q) to the space S ? {??, c, c0, ?1, bs, cs, cs0} using Hausdorff measure of non-compactness. Finally, we give point spectrum of the matrix E?,?(q) in the space c.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the domain of q-Euler matrix in c and c0 with its point spectra\",\"authors\":\"Taja Yaying, B. Hazarika, Liquan Mei\",\"doi\":\"10.2298/fil2302643y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce new Banach spaces e?,? 0 (q) and e?,? c (q) defined as the domain of generalized q-Euler matrix E?,?(q) in the spaces c0 and c, respectively. Some topological properties and inclusion relations related to the newly defined spaces are exhibited. We determine the bases and obtain K?the duals of the spaces e?,? 0 (q) and e?,? c (q). We characterize certain matrix mappings from the spaces e?,? 0 (q) and e?,? c (q) to the space S ? {??, c, c0, ?1, bs, cs, cs0}. We compute necessary and sufficient conditions for a matrix operator to be compact from the space e?,? 0 (q) to the space S ? {??, c, c0, ?1, bs, cs, cs0} using Hausdorff measure of non-compactness. Finally, we give point spectrum of the matrix E?,?(q) in the space c.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2302643y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2302643y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们引入新的巴拿赫空间e? ?0 (q)和e?,?c (q)分别在空间c0和c中定义为广义q-欧拉矩阵E?,?(q)的定义域。展示了与新定义空间相关的一些拓扑性质和包含关系。我们确定碱,得到K?空间e?,?的对偶0 (q)和e?,?c (q)。我们从空间e?,?0 (q)和e?,?c (q)的空间S次方?{? ?, c, c0, ?1, b, cs, c0}。我们从空间e?,?中计算矩阵算子紧化的充分必要条件。0 (q)的空间S次方?{? ?, c, c0, ?1, bs, c0, c0}使用非紧性的Hausdorff测度。最后给出了矩阵E, q在空间c中的点谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the domain of q-Euler matrix in c and c0 with its point spectra
We introduce new Banach spaces e?,? 0 (q) and e?,? c (q) defined as the domain of generalized q-Euler matrix E?,?(q) in the spaces c0 and c, respectively. Some topological properties and inclusion relations related to the newly defined spaces are exhibited. We determine the bases and obtain K?the duals of the spaces e?,? 0 (q) and e?,? c (q). We characterize certain matrix mappings from the spaces e?,? 0 (q) and e?,? c (q) to the space S ? {??, c, c0, ?1, bs, cs, cs0}. We compute necessary and sufficient conditions for a matrix operator to be compact from the space e?,? 0 (q) to the space S ? {??, c, c0, ?1, bs, cs, cs0} using Hausdorff measure of non-compactness. Finally, we give point spectrum of the matrix E?,?(q) in the space c.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信