p-环面最小三三角剖分

IF 0.8 4区 数学 Q2 MATHEMATICS
Filomat Pub Date : 2023-01-01 DOI:10.2298/fil2301115s
M. Stojanovic
{"title":"p-环面最小三三角剖分","authors":"M. Stojanovic","doi":"10.2298/fil2301115s","DOIUrl":null,"url":null,"abstract":"It is known that we can always 3-triangulate (i.e. divide into tetrahedra with the original vertices) convex polyhedra but not always non-convex ones. Polyhedra topologically equivalent to ball with p handles, shortly p-toroids, cannot be convex. So, it is interesting to investigate possibilities and properties of their 3-triangulations. Here we study the minimal number of necessary tetrahedra for the triangulation of a 3-triangulable p-toroid. For that purpose, we developed the concept of piecewise convex polyhedron and that of its connection graph.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal 3-triangulations of p-toroids\",\"authors\":\"M. Stojanovic\",\"doi\":\"10.2298/fil2301115s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that we can always 3-triangulate (i.e. divide into tetrahedra with the original vertices) convex polyhedra but not always non-convex ones. Polyhedra topologically equivalent to ball with p handles, shortly p-toroids, cannot be convex. So, it is interesting to investigate possibilities and properties of their 3-triangulations. Here we study the minimal number of necessary tetrahedra for the triangulation of a 3-triangulable p-toroid. For that purpose, we developed the concept of piecewise convex polyhedron and that of its connection graph.\",\"PeriodicalId\":12305,\"journal\":{\"name\":\"Filomat\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Filomat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2301115s\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Filomat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2301115s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,凸多面体总是可以用3-三角形(即用原始顶点划分为四面体),但非凸多面体却不一定。多面体拓扑上等同于带p柄的球,简称p环面,不能是凸的。因此,研究它们的3-三角剖分的可能性和性质是很有趣的。本文研究了可三三角形p-环面三角剖分所需的最小四面体数。为此,我们提出了分段凸多面体及其连接图的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal 3-triangulations of p-toroids
It is known that we can always 3-triangulate (i.e. divide into tetrahedra with the original vertices) convex polyhedra but not always non-convex ones. Polyhedra topologically equivalent to ball with p handles, shortly p-toroids, cannot be convex. So, it is interesting to investigate possibilities and properties of their 3-triangulations. Here we study the minimal number of necessary tetrahedra for the triangulation of a 3-triangulable p-toroid. For that purpose, we developed the concept of piecewise convex polyhedron and that of its connection graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Filomat
Filomat MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.20
自引率
0.00%
发文量
132
审稿时长
9 months
期刊介绍: The journal publishes original papers in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信