{"title":"利用超二次函数和凸函数改进了Berezin数不等式","authors":"Fengsheng Chien, M. Bakherad, M. Alomari","doi":"10.2298/fil2301265c","DOIUrl":null,"url":null,"abstract":"In this paper, we generalize and refine some Berezin number inequalities for Hilbert space operators. Namely, we refine the Hermite-Hadamard inequality and some other recent results by using the concept of superquadraticity and convexity. Then we extend these inequalities for the Berezin number. Among other inequalities, it is shown that if S, T ? L(H(?)) such that ber(T) ? ber(|S|) and f is a nonnegative superquadratic function, then f (ber (T)) ? ber(f (|S|)) ? ?ber (f (||S| ? ber (T)|)).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Refined Berezin number inequalities via superquadratic and convex functions\",\"authors\":\"Fengsheng Chien, M. Bakherad, M. Alomari\",\"doi\":\"10.2298/fil2301265c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we generalize and refine some Berezin number inequalities for Hilbert space operators. Namely, we refine the Hermite-Hadamard inequality and some other recent results by using the concept of superquadraticity and convexity. Then we extend these inequalities for the Berezin number. Among other inequalities, it is shown that if S, T ? L(H(?)) such that ber(T) ? ber(|S|) and f is a nonnegative superquadratic function, then f (ber (T)) ? ber(f (|S|)) ? ?ber (f (||S| ? ber (T)|)).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2301265c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2301265c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Refined Berezin number inequalities via superquadratic and convex functions
In this paper, we generalize and refine some Berezin number inequalities for Hilbert space operators. Namely, we refine the Hermite-Hadamard inequality and some other recent results by using the concept of superquadraticity and convexity. Then we extend these inequalities for the Berezin number. Among other inequalities, it is shown that if S, T ? L(H(?)) such that ber(T) ? ber(|S|) and f is a nonnegative superquadratic function, then f (ber (T)) ? ber(f (|S|)) ? ?ber (f (||S| ? ber (T)|)).