夏皮罗的不确定性原理和尺度图与黎曼-刘维尔小波变换

Pub Date : 2023-01-01 DOI:10.2298/fil2301043m
H. Mejjaoli, F. Shah
{"title":"夏皮罗的不确定性原理和尺度图与黎曼-刘维尔小波变换","authors":"H. Mejjaoli, F. Shah","doi":"10.2298/fil2301043m","DOIUrl":null,"url":null,"abstract":"The Riemann-Liouville operator has been extensively investigated and has witnessed a remarkable development in numerous fields of harmonic analysis over a couple of decades. The aim of this article is to explore two more aspects of the time-frequency analysis associated with the Riemann-Liouville wavelet transform, including the Shapiro uncertainty principle and the scalogram.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shapiro’s uncertainty principles and scalogram associated with the Riemann-Liouville wavelet transform\",\"authors\":\"H. Mejjaoli, F. Shah\",\"doi\":\"10.2298/fil2301043m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Riemann-Liouville operator has been extensively investigated and has witnessed a remarkable development in numerous fields of harmonic analysis over a couple of decades. The aim of this article is to explore two more aspects of the time-frequency analysis associated with the Riemann-Liouville wavelet transform, including the Shapiro uncertainty principle and the scalogram.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2301043m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2301043m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,黎曼-刘维尔算子在谐波分析的许多领域得到了广泛的研究,并取得了显著的发展。本文的目的是探讨与Riemann-Liouville小波变换相关的时频分析的另外两个方面,包括夏皮罗不确定性原理和尺度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Shapiro’s uncertainty principles and scalogram associated with the Riemann-Liouville wavelet transform
The Riemann-Liouville operator has been extensively investigated and has witnessed a remarkable development in numerous fields of harmonic analysis over a couple of decades. The aim of this article is to explore two more aspects of the time-frequency analysis associated with the Riemann-Liouville wavelet transform, including the Shapiro uncertainty principle and the scalogram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信