{"title":"标准算子代数上的Jordan *-导数","authors":"A. Ansari, F. Shujat","doi":"10.2298/fil2301037a","DOIUrl":null,"url":null,"abstract":"LetH be a real or complex Hilbert space with dim(H) > 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator algebra on H. If D : A(H) ? B(H) is a linear mapping satisfying D(An+1) = Pn i=0 AiD(A)(A*)n?i for all A ? A(H), then D is a Jordan *-derivation on A(H). Later, we discuss some algebraic identities on semiprime rings.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jordan *-derivations on standard operator algebras\",\"authors\":\"A. Ansari, F. Shujat\",\"doi\":\"10.2298/fil2301037a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LetH be a real or complex Hilbert space with dim(H) > 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator algebra on H. If D : A(H) ? B(H) is a linear mapping satisfying D(An+1) = Pn i=0 AiD(A)(A*)n?i for all A ? A(H), then D is a Jordan *-derivation on A(H). Later, we discuss some algebraic identities on semiprime rings.\",\"PeriodicalId\":12305,\"journal\":{\"name\":\"Filomat\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Filomat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2301037a\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Filomat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2301037a","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
LetH是一个实数或复希尔伯特空间,其中dim(H) >1, B(H)是H和a (H)上所有有界线性算子的代数?B(H)是H上的标准算子代数,如果D: a (H) ?B(H)是一个线性映射,满足D(An+1) = Pn i=0 AiD(a)(a *)n?i for all A ?A(H)那么D是A(H)的约当导数。随后,我们讨论了半素环上的一些代数恒等式。
Jordan *-derivations on standard operator algebras
LetH be a real or complex Hilbert space with dim(H) > 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator algebra on H. If D : A(H) ? B(H) is a linear mapping satisfying D(An+1) = Pn i=0 AiD(A)(A*)n?i for all A ? A(H), then D is a Jordan *-derivation on A(H). Later, we discuss some algebraic identities on semiprime rings.