基于倾斜椭圆轮廓分布假设的随机回归模型及其在纵向数据中的应用。

Q3 Mathematics
S. Zheng, Uma Rao, A. Bartolucci, Karan P. Singh
{"title":"基于倾斜椭圆轮廓分布假设的随机回归模型及其在纵向数据中的应用。","authors":"S. Zheng, Uma Rao, A. Bartolucci, Karan P. Singh","doi":"10.22237/JMASM/1067645340","DOIUrl":null,"url":null,"abstract":"Bartolucci et al.(2003) extended the distribution assumption from the normal (Lyles et al., 2000) to the elliptical contoured distribution (ECD) for random regression models used in analysis of longitudinal data accounting for both undetectable values and informative drop-outs. In this paper, the random regression models are constructed on the multivariate skew ECD. A real data set is used to illustrate that the skew ECDs can fit some unimodal continuous data better than the Gaussian distributions or more general continuous symmetric distributions when the symmetric distribution assumption is violated. Also, a simulation study is done for illustrating the model fitness from a variety of skew ECDs. The software we used is SAS/STAT, V. 9.13.","PeriodicalId":38394,"journal":{"name":"Journal of Applied Probability and Statistics","volume":"4 1 1","pages":"21-32"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Regression Models Based On The Skew Elliptically Contoured Distribution Assumptions With Applications To Longitudinal Data.\",\"authors\":\"S. Zheng, Uma Rao, A. Bartolucci, Karan P. Singh\",\"doi\":\"10.22237/JMASM/1067645340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bartolucci et al.(2003) extended the distribution assumption from the normal (Lyles et al., 2000) to the elliptical contoured distribution (ECD) for random regression models used in analysis of longitudinal data accounting for both undetectable values and informative drop-outs. In this paper, the random regression models are constructed on the multivariate skew ECD. A real data set is used to illustrate that the skew ECDs can fit some unimodal continuous data better than the Gaussian distributions or more general continuous symmetric distributions when the symmetric distribution assumption is violated. Also, a simulation study is done for illustrating the model fitness from a variety of skew ECDs. The software we used is SAS/STAT, V. 9.13.\",\"PeriodicalId\":38394,\"journal\":{\"name\":\"Journal of Applied Probability and Statistics\",\"volume\":\"4 1 1\",\"pages\":\"21-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/JMASM/1067645340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/JMASM/1067645340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

Bartolucci et al.(2003)将分布假设从正态(Lyles et al., 2000)扩展到椭圆轮廓分布(ECD),用于纵向数据分析的随机回归模型,考虑了不可检测值和信息缺失。本文建立了多元偏态ECD的随机回归模型。用一个真实的数据集说明,当对称分布假设被违反时,偏微分方程比高斯分布或更一般的连续对称分布能更好地拟合单峰连续数据。此外,本文还进行了仿真研究,以说明各种偏态ecd的模型适应度。我们使用的软件是SAS/STAT, V. 9.13。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Regression Models Based On The Skew Elliptically Contoured Distribution Assumptions With Applications To Longitudinal Data.
Bartolucci et al.(2003) extended the distribution assumption from the normal (Lyles et al., 2000) to the elliptical contoured distribution (ECD) for random regression models used in analysis of longitudinal data accounting for both undetectable values and informative drop-outs. In this paper, the random regression models are constructed on the multivariate skew ECD. A real data set is used to illustrate that the skew ECDs can fit some unimodal continuous data better than the Gaussian distributions or more general continuous symmetric distributions when the symmetric distribution assumption is violated. Also, a simulation study is done for illustrating the model fitness from a variety of skew ECDs. The software we used is SAS/STAT, V. 9.13.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Probability and Statistics
Journal of Applied Probability and Statistics Health Professions-Podiatry
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信