Zhengjiang Wang, Yang Yang, Y. Su, J. Wang, Zhongping Wei, Yajuan Li, Jiawei Li, Chao Zhu
{"title":"再生砖骨料混凝土损伤机理研究","authors":"Zhengjiang Wang, Yang Yang, Y. Su, J. Wang, Zhongping Wei, Yajuan Li, Jiawei Li, Chao Zhu","doi":"10.2298/tsci2303145w","DOIUrl":null,"url":null,"abstract":"WIt has great environmental potential to replace natural aggregates by recycled brick aggregates. To investigate the deterioration mechanism of recycled brick aggregate concrete, this paper designed eight groups of recycled brick aggregate sub-lightweight concrete with different water-cement ratios, maximum aggregate sizes and coarse aggregate type ratios, and carried out mechanical property test to analyze the aggregate interface characteristics and the damage mechanism of recycled brick aggregate concrete. The results show that the increase of replacement ratio and water-cement ratio leads to a significant decrease of compressive strength and splitting tensile strength of concrete, and the influence of the maximum aggregate size on strength is small. Unlike the recycled concrete aggregate - mortar interface, the microstructure of recycled brick aggregate - mortar interface is dense and the interface performance is enhanced. Recycled brick aggregate concrete is in non-interface damage mode, and the strength of brick aggregate is the main influence to determine the mechanical properties of concrete factor.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage mechanism of concrete with recycled brick aggregate\",\"authors\":\"Zhengjiang Wang, Yang Yang, Y. Su, J. Wang, Zhongping Wei, Yajuan Li, Jiawei Li, Chao Zhu\",\"doi\":\"10.2298/tsci2303145w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WIt has great environmental potential to replace natural aggregates by recycled brick aggregates. To investigate the deterioration mechanism of recycled brick aggregate concrete, this paper designed eight groups of recycled brick aggregate sub-lightweight concrete with different water-cement ratios, maximum aggregate sizes and coarse aggregate type ratios, and carried out mechanical property test to analyze the aggregate interface characteristics and the damage mechanism of recycled brick aggregate concrete. The results show that the increase of replacement ratio and water-cement ratio leads to a significant decrease of compressive strength and splitting tensile strength of concrete, and the influence of the maximum aggregate size on strength is small. Unlike the recycled concrete aggregate - mortar interface, the microstructure of recycled brick aggregate - mortar interface is dense and the interface performance is enhanced. Recycled brick aggregate concrete is in non-interface damage mode, and the strength of brick aggregate is the main influence to determine the mechanical properties of concrete factor.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci2303145w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci2303145w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Damage mechanism of concrete with recycled brick aggregate
WIt has great environmental potential to replace natural aggregates by recycled brick aggregates. To investigate the deterioration mechanism of recycled brick aggregate concrete, this paper designed eight groups of recycled brick aggregate sub-lightweight concrete with different water-cement ratios, maximum aggregate sizes and coarse aggregate type ratios, and carried out mechanical property test to analyze the aggregate interface characteristics and the damage mechanism of recycled brick aggregate concrete. The results show that the increase of replacement ratio and water-cement ratio leads to a significant decrease of compressive strength and splitting tensile strength of concrete, and the influence of the maximum aggregate size on strength is small. Unlike the recycled concrete aggregate - mortar interface, the microstructure of recycled brick aggregate - mortar interface is dense and the interface performance is enhanced. Recycled brick aggregate concrete is in non-interface damage mode, and the strength of brick aggregate is the main influence to determine the mechanical properties of concrete factor.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.