{"title":"基于热泵和可拆卸电池能量回收的电动汽车热管理系统","authors":"Yuanfei Xue, Xudong Diao, Xin Li","doi":"10.2298/tsci2302215x","DOIUrl":null,"url":null,"abstract":"In order to manage the air-conditioning thermal system, battery thermal system and motor thermal system in a unified manner, the author proposes a self-developed integrated thermal management system for electric vehicles to recover battery energy. Firstly, the problems in the development of electric vehicles and the importance of thermal management system are introduced, secondly, the self-developed thermal management system scheme and the principle of each part are analyzed, the experimental results of thermal system in enthalpy difference chamber are also introduced. The experimental results show that: Under the double evaporation system, when the compressor speed is 4500 rpm, the maximum COP is 2.46, and the maximum COP charge is 1180 g, the maximum heat transfer capacity is 4819 W (wind side heat transfer + water side heat transfer), the evaporation temperature is 5.35?C, the evaporation superheat is 9.5?C, the condensation temperature is 59.3?C, the undercooling degree is 10.4?C, the suction pressure is 280 kPa, and the exhaust pressure is 1694 kPa. In conclusion, the thermal management system has great energy saving effect, which ensures that the electric vehicle range will not be greatly attenuated under winter heating conditions, and meets the requirements of comfort.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heat management system of electric vehicle based on heat pump and energy recovery of removable battery\",\"authors\":\"Yuanfei Xue, Xudong Diao, Xin Li\",\"doi\":\"10.2298/tsci2302215x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to manage the air-conditioning thermal system, battery thermal system and motor thermal system in a unified manner, the author proposes a self-developed integrated thermal management system for electric vehicles to recover battery energy. Firstly, the problems in the development of electric vehicles and the importance of thermal management system are introduced, secondly, the self-developed thermal management system scheme and the principle of each part are analyzed, the experimental results of thermal system in enthalpy difference chamber are also introduced. The experimental results show that: Under the double evaporation system, when the compressor speed is 4500 rpm, the maximum COP is 2.46, and the maximum COP charge is 1180 g, the maximum heat transfer capacity is 4819 W (wind side heat transfer + water side heat transfer), the evaporation temperature is 5.35?C, the evaporation superheat is 9.5?C, the condensation temperature is 59.3?C, the undercooling degree is 10.4?C, the suction pressure is 280 kPa, and the exhaust pressure is 1694 kPa. In conclusion, the thermal management system has great energy saving effect, which ensures that the electric vehicle range will not be greatly attenuated under winter heating conditions, and meets the requirements of comfort.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci2302215x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci2302215x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Heat management system of electric vehicle based on heat pump and energy recovery of removable battery
In order to manage the air-conditioning thermal system, battery thermal system and motor thermal system in a unified manner, the author proposes a self-developed integrated thermal management system for electric vehicles to recover battery energy. Firstly, the problems in the development of electric vehicles and the importance of thermal management system are introduced, secondly, the self-developed thermal management system scheme and the principle of each part are analyzed, the experimental results of thermal system in enthalpy difference chamber are also introduced. The experimental results show that: Under the double evaporation system, when the compressor speed is 4500 rpm, the maximum COP is 2.46, and the maximum COP charge is 1180 g, the maximum heat transfer capacity is 4819 W (wind side heat transfer + water side heat transfer), the evaporation temperature is 5.35?C, the evaporation superheat is 9.5?C, the condensation temperature is 59.3?C, the undercooling degree is 10.4?C, the suction pressure is 280 kPa, and the exhaust pressure is 1694 kPa. In conclusion, the thermal management system has great energy saving effect, which ensures that the electric vehicle range will not be greatly attenuated under winter heating conditions, and meets the requirements of comfort.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.