利用热成像和三维扫描技术研究三维打印材料的热行为和尺寸行为

IF 1.1 4区 工程技术 Q4 THERMODYNAMICS
Z. Golubovic, M. Travica, Isaak Trajković, A. Petrovic, Ž. Mišković, N. Mitrović
{"title":"利用热成像和三维扫描技术研究三维打印材料的热行为和尺寸行为","authors":"Z. Golubovic, M. Travica, Isaak Trajković, A. Petrovic, Ž. Mišković, N. Mitrović","doi":"10.2298/tsci2301021g","DOIUrl":null,"url":null,"abstract":"Fused deposition modeling is one of the most widely used 3-D printing technologies, among other additive manufacturing processes, because it is easy to use, can produce parts faster, and the cost of the finished part is low. Printing processes and finished parts are often studied and characterized using different techniques to collect mechanical, numerical, thermal and dimensional data, with the aim of improving and optimizing the result. The first part of this research is based on the observation of temperature changes with a thermal imaging camera during the fused deposition modeling printing process and during the cooling process after printing. Specimens of polylactic acid and polylactic acid-X improved with second-phase particles were prepared to compare the thermal and dimensional properties of the two materials. The obtained results determined the characteristic temperature behavior of the materials. In the second part of the research, a 3-D optical scanner was used to verify the stability and accuracy of the printed specimens over time. The proposed measurement period showed that stabilization of the parameters takes place, and further follow-up should be performed thereafter.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of thermal and dimensional behavior of 3-D printed materials using thermal imaging and 3-D scanning\",\"authors\":\"Z. Golubovic, M. Travica, Isaak Trajković, A. Petrovic, Ž. Mišković, N. Mitrović\",\"doi\":\"10.2298/tsci2301021g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fused deposition modeling is one of the most widely used 3-D printing technologies, among other additive manufacturing processes, because it is easy to use, can produce parts faster, and the cost of the finished part is low. Printing processes and finished parts are often studied and characterized using different techniques to collect mechanical, numerical, thermal and dimensional data, with the aim of improving and optimizing the result. The first part of this research is based on the observation of temperature changes with a thermal imaging camera during the fused deposition modeling printing process and during the cooling process after printing. Specimens of polylactic acid and polylactic acid-X improved with second-phase particles were prepared to compare the thermal and dimensional properties of the two materials. The obtained results determined the characteristic temperature behavior of the materials. In the second part of the research, a 3-D optical scanner was used to verify the stability and accuracy of the printed specimens over time. The proposed measurement period showed that stabilization of the parameters takes place, and further follow-up should be performed thereafter.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci2301021g\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci2301021g","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在其他增材制造工艺中,熔融沉积建模是应用最广泛的3d打印技术之一,因为它易于使用,可以更快地生产零件,并且成品零件的成本很低。通常使用不同的技术来研究和表征印刷过程和成品部件,以收集机械,数值,热和尺寸数据,目的是改进和优化结果。本研究的第一部分是基于热像仪对熔融沉积造型打印过程和打印后冷却过程中温度变化的观察。制备了聚乳酸和二相颗粒改性聚乳酸- x的试样,比较了两种材料的热性能和尺寸性能。所得结果决定了材料的特征温度行为。在研究的第二部分,使用3d光学扫描仪来验证打印标本随时间的稳定性和准确性。建议的测量周期表明参数稳定发生,此后应进行进一步的随访。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of thermal and dimensional behavior of 3-D printed materials using thermal imaging and 3-D scanning
Fused deposition modeling is one of the most widely used 3-D printing technologies, among other additive manufacturing processes, because it is easy to use, can produce parts faster, and the cost of the finished part is low. Printing processes and finished parts are often studied and characterized using different techniques to collect mechanical, numerical, thermal and dimensional data, with the aim of improving and optimizing the result. The first part of this research is based on the observation of temperature changes with a thermal imaging camera during the fused deposition modeling printing process and during the cooling process after printing. Specimens of polylactic acid and polylactic acid-X improved with second-phase particles were prepared to compare the thermal and dimensional properties of the two materials. The obtained results determined the characteristic temperature behavior of the materials. In the second part of the research, a 3-D optical scanner was used to verify the stability and accuracy of the printed specimens over time. The proposed measurement period showed that stabilization of the parameters takes place, and further follow-up should be performed thereafter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermal Science
Thermal Science 工程技术-热力学
CiteScore
2.70
自引率
29.40%
发文量
399
审稿时长
5 months
期刊介绍: The main aims of Thermal Science to publish papers giving results of the fundamental and applied research in different, but closely connected fields: fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes in single, and specifically in multi-phase and multi-component flows in high-temperature chemically reacting flows processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering, The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信