C. Luo, Lichang Huang, Jiawei He, Huiwen Huang, S. Cai
{"title":"基于地质的黄沙洞地热田温度对地热发电厂性能的影响","authors":"C. Luo, Lichang Huang, Jiawei He, Huiwen Huang, S. Cai","doi":"10.2298/tsci221215079l","DOIUrl":null,"url":null,"abstract":"The geological structure is rather complicated in Guangdong province, in China. The 10 deep fault belts are mainly oriented in NE. The NE fault belts are good channels for deep thermal energy upwelling, which can form a geothermal water reservoir zone. The heating of atmospheric precipitation and surface water by deep rocks is the primary formation mechanism for the hydrothermal resources in the Huangshadong geothermal field. The results show that the two-stage conversion system of flash-binary is more reasonable when the geofluid temperature is higher than 130oC. With every 10oC increment of geofluid temperature for flash-binary system, the power output and exergy efficiency increase by 21.6-38.7% and 6.0-13.1% respectively. The power output and exergy efficiency will decrease by about 20-40% when cooling temperature arising from 15 to 25oC. The research will provide the basic data for the demonstration of geothermal resource exploitation.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of temperature on geothermal power plant performance based on geology in Huangshadong geothermal field, China\",\"authors\":\"C. Luo, Lichang Huang, Jiawei He, Huiwen Huang, S. Cai\",\"doi\":\"10.2298/tsci221215079l\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geological structure is rather complicated in Guangdong province, in China. The 10 deep fault belts are mainly oriented in NE. The NE fault belts are good channels for deep thermal energy upwelling, which can form a geothermal water reservoir zone. The heating of atmospheric precipitation and surface water by deep rocks is the primary formation mechanism for the hydrothermal resources in the Huangshadong geothermal field. The results show that the two-stage conversion system of flash-binary is more reasonable when the geofluid temperature is higher than 130oC. With every 10oC increment of geofluid temperature for flash-binary system, the power output and exergy efficiency increase by 21.6-38.7% and 6.0-13.1% respectively. The power output and exergy efficiency will decrease by about 20-40% when cooling temperature arising from 15 to 25oC. The research will provide the basic data for the demonstration of geothermal resource exploitation.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci221215079l\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci221215079l","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
The influence of temperature on geothermal power plant performance based on geology in Huangshadong geothermal field, China
The geological structure is rather complicated in Guangdong province, in China. The 10 deep fault belts are mainly oriented in NE. The NE fault belts are good channels for deep thermal energy upwelling, which can form a geothermal water reservoir zone. The heating of atmospheric precipitation and surface water by deep rocks is the primary formation mechanism for the hydrothermal resources in the Huangshadong geothermal field. The results show that the two-stage conversion system of flash-binary is more reasonable when the geofluid temperature is higher than 130oC. With every 10oC increment of geofluid temperature for flash-binary system, the power output and exergy efficiency increase by 21.6-38.7% and 6.0-13.1% respectively. The power output and exergy efficiency will decrease by about 20-40% when cooling temperature arising from 15 to 25oC. The research will provide the basic data for the demonstration of geothermal resource exploitation.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.