Ning Wang, S. Deng, Zongyi Wang, Y. Gui, M. Le, Qinxin Zhao, Huaishuang Shao
{"title":"新型水冷预混壁挂燃气锅炉热工性能的实验与仿真研究","authors":"Ning Wang, S. Deng, Zongyi Wang, Y. Gui, M. Le, Qinxin Zhao, Huaishuang Shao","doi":"10.2298/tsci221017067w","DOIUrl":null,"url":null,"abstract":"A wall-hung gas boiler was innovatively proposed and designed in this paper. Water-cooling premixed combustion and enhanced condensation heat exchange technology were adopted in the boiler. The extruded aluminum plate-fin structure was adopted in the burner and condensing heat exchanger. Experiment and numerical simulation studies were conducted on the flow, combustion, and heat exchange characteristics of the boiler. The effect of the fin structure, excess air coefficient, heat load, and water-cooling temperature on the thermal performance of the boiler was analyzed. The results showed that reliable ignition, stable combustion, uniform flame distribution, and low pollutant emissions can be achieved in the wall-hung gas boiler. Affected by burning intensity and internal flue gas recirculation, when the burner plate-fin gap was 1.63 mm, the flame was the shortest and the NOx emissions were the lowest. Under this fin condition, ultra-high efficiency and ultra-low emissions can be achieved in the boiler with a low excess air coefficient. When the excess air coefficient was 1.3, the NOx emissions were less than 30 mg/m3 at the heat load of 4-14 kW, and the thermal efficiency can reach up to 102.8% at the rated load of 14 kW. Within the scope of the experiment, the NOx emissions changed little with the water-cooling temperature. At the temperature of 333 K, there was still a great NOx emission reduction effect.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment and simulation studies on thermal performance of a novel water-cooling premixed wall-hung gas boiler\",\"authors\":\"Ning Wang, S. Deng, Zongyi Wang, Y. Gui, M. Le, Qinxin Zhao, Huaishuang Shao\",\"doi\":\"10.2298/tsci221017067w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wall-hung gas boiler was innovatively proposed and designed in this paper. Water-cooling premixed combustion and enhanced condensation heat exchange technology were adopted in the boiler. The extruded aluminum plate-fin structure was adopted in the burner and condensing heat exchanger. Experiment and numerical simulation studies were conducted on the flow, combustion, and heat exchange characteristics of the boiler. The effect of the fin structure, excess air coefficient, heat load, and water-cooling temperature on the thermal performance of the boiler was analyzed. The results showed that reliable ignition, stable combustion, uniform flame distribution, and low pollutant emissions can be achieved in the wall-hung gas boiler. Affected by burning intensity and internal flue gas recirculation, when the burner plate-fin gap was 1.63 mm, the flame was the shortest and the NOx emissions were the lowest. Under this fin condition, ultra-high efficiency and ultra-low emissions can be achieved in the boiler with a low excess air coefficient. When the excess air coefficient was 1.3, the NOx emissions were less than 30 mg/m3 at the heat load of 4-14 kW, and the thermal efficiency can reach up to 102.8% at the rated load of 14 kW. Within the scope of the experiment, the NOx emissions changed little with the water-cooling temperature. At the temperature of 333 K, there was still a great NOx emission reduction effect.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci221017067w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci221017067w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Experiment and simulation studies on thermal performance of a novel water-cooling premixed wall-hung gas boiler
A wall-hung gas boiler was innovatively proposed and designed in this paper. Water-cooling premixed combustion and enhanced condensation heat exchange technology were adopted in the boiler. The extruded aluminum plate-fin structure was adopted in the burner and condensing heat exchanger. Experiment and numerical simulation studies were conducted on the flow, combustion, and heat exchange characteristics of the boiler. The effect of the fin structure, excess air coefficient, heat load, and water-cooling temperature on the thermal performance of the boiler was analyzed. The results showed that reliable ignition, stable combustion, uniform flame distribution, and low pollutant emissions can be achieved in the wall-hung gas boiler. Affected by burning intensity and internal flue gas recirculation, when the burner plate-fin gap was 1.63 mm, the flame was the shortest and the NOx emissions were the lowest. Under this fin condition, ultra-high efficiency and ultra-low emissions can be achieved in the boiler with a low excess air coefficient. When the excess air coefficient was 1.3, the NOx emissions were less than 30 mg/m3 at the heat load of 4-14 kW, and the thermal efficiency can reach up to 102.8% at the rated load of 14 kW. Within the scope of the experiment, the NOx emissions changed little with the water-cooling temperature. At the temperature of 333 K, there was still a great NOx emission reduction effect.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.