太阳能辅助地下储能系统的仿真与建模

IF 1.1 4区 工程技术 Q4 THERMODYNAMICS
Özdamar Sağlam, Seyit Özdamar, S. Mert
{"title":"太阳能辅助地下储能系统的仿真与建模","authors":"Özdamar Sağlam, Seyit Özdamar, S. Mert","doi":"10.2298/tsci220913025s","DOIUrl":null,"url":null,"abstract":"The significance of energy storage methods and related R&D studies are increasing due to the depletion of fossil fuels, rising energy prices, and growing environmental concerns. Storage of energy means elimination of practical concerns for the time difference between the time when the energy is produced and when it?s needed. The importance of producing and storing energy through renewable sources is increasing every day, especially in developing countries like T?rkiye, as such countries would like to reduce their dependence on foreign sources. This study focuses on an UTES (Underground Thermal Energy Storage) system that was modeled for Van Region, using M-file program. The performance of an isolated day heat system as a TES was investigated, and the thermal energy storage capacity of the system was researched for a 5x5x5 m soil area located on the Van Yuzuncu Yil University Campus. The temperature distribution, heat loss, and efficiency calculations were performed for a complete year and 3D representations of the findings were obtained. The lowest efficiencies were observed in May, while the highest efficiencies were observed in July. It was found that the maximum heat loss from the system took place during December and January, and the system could be easily and effectively become a heating source for a single household with the addition of a heat pump.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and modeling of a solar-aided underground energy storage system\",\"authors\":\"Özdamar Sağlam, Seyit Özdamar, S. Mert\",\"doi\":\"10.2298/tsci220913025s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significance of energy storage methods and related R&D studies are increasing due to the depletion of fossil fuels, rising energy prices, and growing environmental concerns. Storage of energy means elimination of practical concerns for the time difference between the time when the energy is produced and when it?s needed. The importance of producing and storing energy through renewable sources is increasing every day, especially in developing countries like T?rkiye, as such countries would like to reduce their dependence on foreign sources. This study focuses on an UTES (Underground Thermal Energy Storage) system that was modeled for Van Region, using M-file program. The performance of an isolated day heat system as a TES was investigated, and the thermal energy storage capacity of the system was researched for a 5x5x5 m soil area located on the Van Yuzuncu Yil University Campus. The temperature distribution, heat loss, and efficiency calculations were performed for a complete year and 3D representations of the findings were obtained. The lowest efficiencies were observed in May, while the highest efficiencies were observed in July. It was found that the maximum heat loss from the system took place during December and January, and the system could be easily and effectively become a heating source for a single household with the addition of a heat pump.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci220913025s\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci220913025s","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

由于化石燃料的枯竭、能源价格的上涨和日益增长的环境问题,储能方法和相关研发研究的意义越来越大。能量储存意味着消除对能量产生的时间和能量产生的时间之间的时间差的实际担忧。年代的需要。通过可再生能源生产和储存能源的重要性与日俱增,尤其是在中国这样的发展中国家。这些国家希望减少对外国能源的依赖。本研究的重点是使用m文件程序对Van地区的地下热能储存系统进行建模。研究了孤立日供热系统作为TES的性能,并对位于Van yuzunku yiil大学校园5x5x5 m土壤区域的系统蓄热能力进行了研究。温度分布、热损失和效率计算进行了整整一年,并获得了结果的3D表示。5月的效率最低,7月的效率最高。结果表明,该系统的最大热损失发生在12月和1月,在增加热泵后,该系统可以轻松有效地成为单个家庭的热源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and modeling of a solar-aided underground energy storage system
The significance of energy storage methods and related R&D studies are increasing due to the depletion of fossil fuels, rising energy prices, and growing environmental concerns. Storage of energy means elimination of practical concerns for the time difference between the time when the energy is produced and when it?s needed. The importance of producing and storing energy through renewable sources is increasing every day, especially in developing countries like T?rkiye, as such countries would like to reduce their dependence on foreign sources. This study focuses on an UTES (Underground Thermal Energy Storage) system that was modeled for Van Region, using M-file program. The performance of an isolated day heat system as a TES was investigated, and the thermal energy storage capacity of the system was researched for a 5x5x5 m soil area located on the Van Yuzuncu Yil University Campus. The temperature distribution, heat loss, and efficiency calculations were performed for a complete year and 3D representations of the findings were obtained. The lowest efficiencies were observed in May, while the highest efficiencies were observed in July. It was found that the maximum heat loss from the system took place during December and January, and the system could be easily and effectively become a heating source for a single household with the addition of a heat pump.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermal Science
Thermal Science 工程技术-热力学
CiteScore
2.70
自引率
29.40%
发文量
399
审稿时长
5 months
期刊介绍: The main aims of Thermal Science to publish papers giving results of the fundamental and applied research in different, but closely connected fields: fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes in single, and specifically in multi-phase and multi-component flows in high-temperature chemically reacting flows processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering, The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信