Z. Marković, M. Eric, P. Stefanovic, R. Jovanović, I. Lazović
{"title":"TPP“尼古拉特斯拉”4号机组静电除尘器烟气流量控制装置的优化","authors":"Z. Marković, M. Eric, P. Stefanovic, R. Jovanović, I. Lazović","doi":"10.2298/tsci220903024m","DOIUrl":null,"url":null,"abstract":"Homogeneity of the flue gas flow through the chamber of an electrostatic precipitator is one of the basic influencing parameter on dedusting efficiency. This paper presents results of a multiobjective optimization study of the flue gas controlling devices of electrostatic precipitator of 324 MWe lignite fired unit A4 of Thermal Power Plant \"Nikola Tesla\" in Serbia. The aim was to achieve better flow homogeneity in the cross-section of the precipitator compared to the original design. Additional constraints were to maintain the minimum as possible overall weight of the proposed design as well as pressure drop through the precipitator. Numerical simulations based on Computational Fluid Dynamics were used to investigate dependence of the velocity distribution in the ducts and precipitator?s chamber with respect to the geometrical parameters of tested concepts of turning blades. A series of 22 detailed full-scale numerical models of the precipitator with different concepts of turning vanes designs were developed. Assessment of the flow field uniformity for each tested design was performed based on the analysis of several homogeneity parameters calculated for selected vertical cross-sections of the precipitator. After the reconstruction according to optimized design, results of measurements confirmed significant improvements of the velocity distribution in the vertical cross-sections of the precipitator, increase of dedusting efficiency and reduction of PM emission.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the flue gas flow controlling devices of the electrostatic precipitator of unit 4 in TPP \\\"Nikola Tesla\\\"\",\"authors\":\"Z. Marković, M. Eric, P. Stefanovic, R. Jovanović, I. Lazović\",\"doi\":\"10.2298/tsci220903024m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homogeneity of the flue gas flow through the chamber of an electrostatic precipitator is one of the basic influencing parameter on dedusting efficiency. This paper presents results of a multiobjective optimization study of the flue gas controlling devices of electrostatic precipitator of 324 MWe lignite fired unit A4 of Thermal Power Plant \\\"Nikola Tesla\\\" in Serbia. The aim was to achieve better flow homogeneity in the cross-section of the precipitator compared to the original design. Additional constraints were to maintain the minimum as possible overall weight of the proposed design as well as pressure drop through the precipitator. Numerical simulations based on Computational Fluid Dynamics were used to investigate dependence of the velocity distribution in the ducts and precipitator?s chamber with respect to the geometrical parameters of tested concepts of turning blades. A series of 22 detailed full-scale numerical models of the precipitator with different concepts of turning vanes designs were developed. Assessment of the flow field uniformity for each tested design was performed based on the analysis of several homogeneity parameters calculated for selected vertical cross-sections of the precipitator. After the reconstruction according to optimized design, results of measurements confirmed significant improvements of the velocity distribution in the vertical cross-sections of the precipitator, increase of dedusting efficiency and reduction of PM emission.\",\"PeriodicalId\":23125,\"journal\":{\"name\":\"Thermal Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/tsci220903024m\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci220903024m","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Optimization of the flue gas flow controlling devices of the electrostatic precipitator of unit 4 in TPP "Nikola Tesla"
Homogeneity of the flue gas flow through the chamber of an electrostatic precipitator is one of the basic influencing parameter on dedusting efficiency. This paper presents results of a multiobjective optimization study of the flue gas controlling devices of electrostatic precipitator of 324 MWe lignite fired unit A4 of Thermal Power Plant "Nikola Tesla" in Serbia. The aim was to achieve better flow homogeneity in the cross-section of the precipitator compared to the original design. Additional constraints were to maintain the minimum as possible overall weight of the proposed design as well as pressure drop through the precipitator. Numerical simulations based on Computational Fluid Dynamics were used to investigate dependence of the velocity distribution in the ducts and precipitator?s chamber with respect to the geometrical parameters of tested concepts of turning blades. A series of 22 detailed full-scale numerical models of the precipitator with different concepts of turning vanes designs were developed. Assessment of the flow field uniformity for each tested design was performed based on the analysis of several homogeneity parameters calculated for selected vertical cross-sections of the precipitator. After the reconstruction according to optimized design, results of measurements confirmed significant improvements of the velocity distribution in the vertical cross-sections of the precipitator, increase of dedusting efficiency and reduction of PM emission.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.