余维2中的强鲁棒环面理想

S. Sullivant
{"title":"余维2中的强鲁棒环面理想","authors":"S. Sullivant","doi":"10.18409/JAS.V10I1.62","DOIUrl":null,"url":null,"abstract":"A homogeneous ideal is robust if its universal Gröbner basis is also a minimal generating set.  For toric ideals, one has the stronger definition: A toric ideal is strongly robust if its Graver basis equals the set of indispensable binomials.  We characterize the codimension 2  strongly robust toric ideals by their Gale diagrams.  This give a positive answer to a question of Petrovic, Thoma, and Vladoiu in the case of codimension 2 toric ideals.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Strongly Robust Toric Ideals in Codimension 2\",\"authors\":\"S. Sullivant\",\"doi\":\"10.18409/JAS.V10I1.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A homogeneous ideal is robust if its universal Gröbner basis is also a minimal generating set.  For toric ideals, one has the stronger definition: A toric ideal is strongly robust if its Graver basis equals the set of indispensable binomials.  We characterize the codimension 2  strongly robust toric ideals by their Gale diagrams.  This give a positive answer to a question of Petrovic, Thoma, and Vladoiu in the case of codimension 2 toric ideals.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18409/JAS.V10I1.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18409/JAS.V10I1.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

齐次理想是鲁棒的,如果它的全称Gröbner基也是一个极小的发电集。对于环理想,有一个更强的定义:一个环理想是强鲁棒的,如果它的格拉弗基等于一组不可或缺的二项。我们用Gale图刻画了余维2强鲁棒环理想。这就给了Petrovic, Thoma和Vladoiu关于余维数为2的环面理想的问题一个肯定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly Robust Toric Ideals in Codimension 2
A homogeneous ideal is robust if its universal Gröbner basis is also a minimal generating set.  For toric ideals, one has the stronger definition: A toric ideal is strongly robust if its Graver basis equals the set of indispensable binomials.  We characterize the codimension 2  strongly robust toric ideals by their Gale diagrams.  This give a positive answer to a question of Petrovic, Thoma, and Vladoiu in the case of codimension 2 toric ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信