马虎的几何学

Emilie Dufresne, H. Harrington, D. Raman
{"title":"马虎的几何学","authors":"Emilie Dufresne, H. Harrington, D. Raman","doi":"10.18409/JAS.V9I1.64","DOIUrl":null,"url":null,"abstract":"The use of mathematical models in the sciences often requires the estimation of unknown parameter values from data. Sloppiness provides information about the uncertainty of this task. In this paper, we develop a precise mathematical foundation for sloppiness and define rigorously its key concepts, such as `model manifold', in relation to concepts of structural identifiability. We redefine sloppiness conceptually as a comparison between the premetric on parameter space induced by measurement noise  and a reference metric. This opens up the possibility of alternative quantification of sloppiness, beyond the standard use of the Fisher Information Matrix, which assumes that parameter space is equipped with the usual Euclidean and the measurement error is infinitesimal. Applications include parametric statistical models, explicit time dependent models, and ordinary differential equation models.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The geometry of Sloppiness\",\"authors\":\"Emilie Dufresne, H. Harrington, D. Raman\",\"doi\":\"10.18409/JAS.V9I1.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of mathematical models in the sciences often requires the estimation of unknown parameter values from data. Sloppiness provides information about the uncertainty of this task. In this paper, we develop a precise mathematical foundation for sloppiness and define rigorously its key concepts, such as `model manifold', in relation to concepts of structural identifiability. We redefine sloppiness conceptually as a comparison between the premetric on parameter space induced by measurement noise  and a reference metric. This opens up the possibility of alternative quantification of sloppiness, beyond the standard use of the Fisher Information Matrix, which assumes that parameter space is equipped with the usual Euclidean and the measurement error is infinitesimal. Applications include parametric statistical models, explicit time dependent models, and ordinary differential equation models.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18409/JAS.V9I1.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18409/JAS.V9I1.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在科学中使用数学模型常常需要从数据中估计未知的参数值。马虎度提供了关于该任务的不确定性的信息。在本文中,我们开发了一个精确的数学基础马虎和严格定义其关键概念,如“模型流形”,在结构可识别的概念。我们在概念上重新定义马虎度,将其定义为由测量噪声引起的参数空间上的预度量与参考度量之间的比较。这为马虎度的替代量化提供了可能性,超出了Fisher信息矩阵的标准使用,Fisher信息矩阵假设参数空间配备了通常的欧几里得矩阵并且测量误差是无穷小的。应用包括参数统计模型、显式时间依赖模型和常微分方程模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The geometry of Sloppiness
The use of mathematical models in the sciences often requires the estimation of unknown parameter values from data. Sloppiness provides information about the uncertainty of this task. In this paper, we develop a precise mathematical foundation for sloppiness and define rigorously its key concepts, such as `model manifold', in relation to concepts of structural identifiability. We redefine sloppiness conceptually as a comparison between the premetric on parameter space induced by measurement noise  and a reference metric. This opens up the possibility of alternative quantification of sloppiness, beyond the standard use of the Fisher Information Matrix, which assumes that parameter space is equipped with the usual Euclidean and the measurement error is infinitesimal. Applications include parametric statistical models, explicit time dependent models, and ordinary differential equation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信