{"title":"城市生活垃圾填埋场对Amsal河沉积物和地表水水质的影响——以阿尔及利亚东北部Ziama Mansouriah填埋场为例","authors":"Leila Benfridja, A. Krika, F. Krika","doi":"10.22124/CJES.2021.4502","DOIUrl":null,"url":null,"abstract":"Landfills represent possible sources of diverse contaminants that can cause human health and ecological problems. The purpose of this study is to assess the pollution caused by a leachate from Ziama Mensouriah municipal landfill (north-eastern Algeria) affecting sediments and surface water. The water quality has been evaluated using River Pollution Index (RPI). Sediment contamination assessment was carried out using the pollution indicators including: contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo). According to the results, the RPI of Amsal River indicates an unpolluted water at site 1 (S1) (RPI = 2.5), severely polluted water at landfill effluent discharge (S2) (RPI = 8.25) and moderately polluted once at site (S3) (RPI = 5.5). In sediments, the order of mean concentration (µg g-1) of metals was Pb (156.2) > Cd (1.76). Furthermore, spatial distribution of both metals in sediments showed a significantly higher concentration at S2 indicating that metal pollution is caused by leachate from the studied municipal landfill. The Igeo values reveal that Pb was significantly accumulated compared to Cd. The highest CF values (>6) of Pb and Cd determined at S2 promote a high Pb and Cd contamination in that specific station. The PLI results showed that all sites, except for S1, were moderately to extremely heavy contaminated.","PeriodicalId":9640,"journal":{"name":"caspian journal of environmental sciences","volume":"19 1","pages":"115-125"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Municipal solid waste landfill impact on sediments and surface water quality of Amsal River: A case study of Ziama Mansouriah landfill (Northeastern Algeria)\",\"authors\":\"Leila Benfridja, A. Krika, F. Krika\",\"doi\":\"10.22124/CJES.2021.4502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Landfills represent possible sources of diverse contaminants that can cause human health and ecological problems. The purpose of this study is to assess the pollution caused by a leachate from Ziama Mensouriah municipal landfill (north-eastern Algeria) affecting sediments and surface water. The water quality has been evaluated using River Pollution Index (RPI). Sediment contamination assessment was carried out using the pollution indicators including: contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo). According to the results, the RPI of Amsal River indicates an unpolluted water at site 1 (S1) (RPI = 2.5), severely polluted water at landfill effluent discharge (S2) (RPI = 8.25) and moderately polluted once at site (S3) (RPI = 5.5). In sediments, the order of mean concentration (µg g-1) of metals was Pb (156.2) > Cd (1.76). Furthermore, spatial distribution of both metals in sediments showed a significantly higher concentration at S2 indicating that metal pollution is caused by leachate from the studied municipal landfill. The Igeo values reveal that Pb was significantly accumulated compared to Cd. The highest CF values (>6) of Pb and Cd determined at S2 promote a high Pb and Cd contamination in that specific station. The PLI results showed that all sites, except for S1, were moderately to extremely heavy contaminated.\",\"PeriodicalId\":9640,\"journal\":{\"name\":\"caspian journal of environmental sciences\",\"volume\":\"19 1\",\"pages\":\"115-125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"caspian journal of environmental sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22124/CJES.2021.4502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"caspian journal of environmental sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/CJES.2021.4502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Municipal solid waste landfill impact on sediments and surface water quality of Amsal River: A case study of Ziama Mansouriah landfill (Northeastern Algeria)
Landfills represent possible sources of diverse contaminants that can cause human health and ecological problems. The purpose of this study is to assess the pollution caused by a leachate from Ziama Mensouriah municipal landfill (north-eastern Algeria) affecting sediments and surface water. The water quality has been evaluated using River Pollution Index (RPI). Sediment contamination assessment was carried out using the pollution indicators including: contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo). According to the results, the RPI of Amsal River indicates an unpolluted water at site 1 (S1) (RPI = 2.5), severely polluted water at landfill effluent discharge (S2) (RPI = 8.25) and moderately polluted once at site (S3) (RPI = 5.5). In sediments, the order of mean concentration (µg g-1) of metals was Pb (156.2) > Cd (1.76). Furthermore, spatial distribution of both metals in sediments showed a significantly higher concentration at S2 indicating that metal pollution is caused by leachate from the studied municipal landfill. The Igeo values reveal that Pb was significantly accumulated compared to Cd. The highest CF values (>6) of Pb and Cd determined at S2 promote a high Pb and Cd contamination in that specific station. The PLI results showed that all sites, except for S1, were moderately to extremely heavy contaminated.