增殖树度、距离和古特曼指数

IF 0.6 Q3 MATHEMATICS
R. Kazemi, Leila Khaleghi Meimondari
{"title":"增殖树度、距离和古特曼指数","authors":"R. Kazemi, Leila Khaleghi Meimondari","doi":"10.22108/TOC.2016.9915","DOIUrl":null,"url":null,"abstract":"‎‎The Gutman index and degree distance of a connected graph $G$ are defined as‎ ‎begin{eqnarray*}‎ ‎textrm{Gut}(G)=sum_{{u,v}subseteq V(G)}d(u)d(v)d_G(u,v)‎, ‎end{eqnarray*}‎ ‎and‎ ‎begin{eqnarray*}‎ ‎DD(G)=sum_{{u,v}subseteq V(G)}(d(u)+d(v))d_G(u,v)‎, ‎end{eqnarray*}‎ ‎respectively‎, ‎where‎ ‎$d(u)$ is the degree of vertex $u$ and $d_G(u,v)$ is the distance between vertices $u$ and $v$‎. ‎In this paper‎, ‎through a recurrence equation for the Wiener index‎, ‎we study the first two‎ ‎moments of the Gutman index and degree distance of increasing‎ ‎trees‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"5 1","pages":"23-31"},"PeriodicalIF":0.6000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DEGREE DISTANCE AND GUTMAN INDEX OF INCREASING TREES\",\"authors\":\"R. Kazemi, Leila Khaleghi Meimondari\",\"doi\":\"10.22108/TOC.2016.9915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎‎The Gutman index and degree distance of a connected graph $G$ are defined as‎ ‎begin{eqnarray*}‎ ‎textrm{Gut}(G)=sum_{{u,v}subseteq V(G)}d(u)d(v)d_G(u,v)‎, ‎end{eqnarray*}‎ ‎and‎ ‎begin{eqnarray*}‎ ‎DD(G)=sum_{{u,v}subseteq V(G)}(d(u)+d(v))d_G(u,v)‎, ‎end{eqnarray*}‎ ‎respectively‎, ‎where‎ ‎$d(u)$ is the degree of vertex $u$ and $d_G(u,v)$ is the distance between vertices $u$ and $v$‎. ‎In this paper‎, ‎through a recurrence equation for the Wiener index‎, ‎we study the first two‎ ‎moments of the Gutman index and degree distance of increasing‎ ‎trees‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"5 1\",\"pages\":\"23-31\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2016.9915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2016.9915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

连通图$G$的Gutman索引和度距离定义为:$ begin{eqnarray*}} $ $ textrm{Gut}(G)=sum_{{u,v}subseteq v (G)}d(u)d(v)d_G(u,v)}(d(u)+d(v))和$ $ begin{eqnarray*}和$ $ begin{eqnarray*} _ (G)=sum_{{u,v}subseteq v (G)}(d(u)+d(v))d_G(u,v)}, $ end{eqnarray*}},其中$ $d(u)$是顶点$u$的度,$d_G(u,v)$是顶点$u$和$v$ $之间的距离。本文通过维纳指数的递推方程,研究了古特曼指数的前两个矩和递增树的度距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEGREE DISTANCE AND GUTMAN INDEX OF INCREASING TREES
‎‎The Gutman index and degree distance of a connected graph $G$ are defined as‎ ‎begin{eqnarray*}‎ ‎textrm{Gut}(G)=sum_{{u,v}subseteq V(G)}d(u)d(v)d_G(u,v)‎, ‎end{eqnarray*}‎ ‎and‎ ‎begin{eqnarray*}‎ ‎DD(G)=sum_{{u,v}subseteq V(G)}(d(u)+d(v))d_G(u,v)‎, ‎end{eqnarray*}‎ ‎respectively‎, ‎where‎ ‎$d(u)$ is the degree of vertex $u$ and $d_G(u,v)$ is the distance between vertices $u$ and $v$‎. ‎In this paper‎, ‎through a recurrence equation for the Wiener index‎, ‎we study the first two‎ ‎moments of the Gutman index and degree distance of increasing‎ ‎trees‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信