在有限群上,所有有界价的双凯利图都是积分的

IF 0.6 Q3 MATHEMATICS
M. Arezoomand
{"title":"在有限群上,所有有界价的双凯利图都是积分的","authors":"M. Arezoomand","doi":"10.22108/TOC.2021.126275.1787","DOIUrl":null,"url":null,"abstract":"Let $kgeq 1$ be an integer and $mathcal{I}_k$ be‎ ‎the set of all finite groups $G$ such that every bi-Cayley graph $BCay(G,S)$ of $G$ with respect to‎ ‎subset $S$ of length $1leq |S|leq k$ is integral‎. ‎Let $kgeq 3$‎. ‎We prove that a finite group $G$ belongs to $mathcal{I}_k$ if and‎ ‎only if $GcongBbb Z_3$‎, ‎$Bbb Z_2^r$ for some integer $r$‎, ‎or $S_3$‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"247-252"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On finite groups all of whose bi-Cayley graphs of bounded valency are integral\",\"authors\":\"M. Arezoomand\",\"doi\":\"10.22108/TOC.2021.126275.1787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $kgeq 1$ be an integer and $mathcal{I}_k$ be‎ ‎the set of all finite groups $G$ such that every bi-Cayley graph $BCay(G,S)$ of $G$ with respect to‎ ‎subset $S$ of length $1leq |S|leq k$ is integral‎. ‎Let $kgeq 3$‎. ‎We prove that a finite group $G$ belongs to $mathcal{I}_k$ if and‎ ‎only if $GcongBbb Z_3$‎, ‎$Bbb Z_2^r$ for some integer $r$‎, ‎or $S_3$‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"10 1\",\"pages\":\"247-252\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2021.126275.1787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2021.126275.1787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$kgeq 1$是一个整数,$mathcal{I}_k$是所有有限群$G$的集合,使得$G$的每一个bi-Cayley图$BCay(G,S)$对长度为$1leq |S|leq k$的子集$S$是整数。让$kgeq $ $。证明了有限群$G$属于$mathcal{I}_k$当且仅当$GcongBbb Z_3$ $, $Bbb Z_2^r$对于整数$r$ $, $S_3$ $ $, $Bbb Z_2^r$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On finite groups all of whose bi-Cayley graphs of bounded valency are integral
Let $kgeq 1$ be an integer and $mathcal{I}_k$ be‎ ‎the set of all finite groups $G$ such that every bi-Cayley graph $BCay(G,S)$ of $G$ with respect to‎ ‎subset $S$ of length $1leq |S|leq k$ is integral‎. ‎Let $kgeq 3$‎. ‎We prove that a finite group $G$ belongs to $mathcal{I}_k$ if and‎ ‎only if $GcongBbb Z_3$‎, ‎$Bbb Z_2^r$ for some integer $r$‎, ‎or $S_3$‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信