最大度树间的极端连接偏心指数

IF 0.6 Q3 MATHEMATICS
Fazal Hayat
{"title":"最大度树间的极端连接偏心指数","authors":"Fazal Hayat","doi":"10.22108/TOC.2021.120679.1693","DOIUrl":null,"url":null,"abstract":"The connective eccentricity index (CEI) of a graph $G$ is defined as $xi^{ce}(G)=sum_{v in V(G)}frac{d_G(v)}{varepsilon_G(v)}$, where $d_G(v)$ is the degree of $v$ and $varepsilon_G(v)$ is the eccentricity of $v$. In this paper, we characterize the unique trees with the maximum and minimum CEI among all $n$-vertex trees and $n$-vertex conjugated trees with fixed maximum degree, respectively.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"239-246"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the extremal connective eccentricity index among trees with maximum degree\",\"authors\":\"Fazal Hayat\",\"doi\":\"10.22108/TOC.2021.120679.1693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The connective eccentricity index (CEI) of a graph $G$ is defined as $xi^{ce}(G)=sum_{v in V(G)}frac{d_G(v)}{varepsilon_G(v)}$, where $d_G(v)$ is the degree of $v$ and $varepsilon_G(v)$ is the eccentricity of $v$. In this paper, we characterize the unique trees with the maximum and minimum CEI among all $n$-vertex trees and $n$-vertex conjugated trees with fixed maximum degree, respectively.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"10 1\",\"pages\":\"239-246\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2021.120679.1693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2021.120679.1693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图$G$的连接偏心率指数(CEI)定义为$xi^{ce}(G)=sum_{v in v (G)}frac{d_G(v)}{varepsilon_G(v)}$,其中$d_G(v)$是$v$的度数,$varepsilon_G(v)$是$v$的偏心率。本文分别刻画了所有$n$顶点树和$n$顶点共轭树中CEI最大和最小的唯一树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the extremal connective eccentricity index among trees with maximum degree
The connective eccentricity index (CEI) of a graph $G$ is defined as $xi^{ce}(G)=sum_{v in V(G)}frac{d_G(v)}{varepsilon_G(v)}$, where $d_G(v)$ is the degree of $v$ and $varepsilon_G(v)$ is the eccentricity of $v$. In this paper, we characterize the unique trees with the maximum and minimum CEI among all $n$-vertex trees and $n$-vertex conjugated trees with fixed maximum degree, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信