图积的Steiner Wiener指数

IF 0.6 Q3 MATHEMATICS
Yaoping Mao, Zhao Wang, I. Gutman
{"title":"图积的Steiner Wiener指数","authors":"Yaoping Mao, Zhao Wang, I. Gutman","doi":"10.22108/TOC.2016.13499","DOIUrl":null,"url":null,"abstract":"The Wiener index $W(G)$ of a connected graph $G$‎ ‎is defined as $W(G)=sum_{u,vin V(G)}d_G(u,v)$‎ ‎where $d_G(u,v)$ is the distance between the vertices $u$ and $v$ of‎ ‎$G$‎. ‎For $Ssubseteq V(G)$‎, ‎the Steiner distance $d(S)$ of‎ ‎the vertices of $S$ is the minimum size of a connected subgraph of‎ ‎$G$ whose vertex set is $S$‎. ‎The  $k$-th Steiner Wiener index‎ ‎$SW_k(G)$ of $G$ is defined as‎ ‎$SW_k(G)=sum_{overset{Ssubseteq V(G)}{|S|=k}} d(S)$‎. ‎We establish‎ ‎expressions for the $k$-th Steiner Wiener index on the join‎, ‎corona‎, ‎cluster‎, ‎lexicographical product‎, ‎and Cartesian product of graphs‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"5 1","pages":"39-50"},"PeriodicalIF":0.6000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Steiner Wiener index of graph products\",\"authors\":\"Yaoping Mao, Zhao Wang, I. Gutman\",\"doi\":\"10.22108/TOC.2016.13499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Wiener index $W(G)$ of a connected graph $G$‎ ‎is defined as $W(G)=sum_{u,vin V(G)}d_G(u,v)$‎ ‎where $d_G(u,v)$ is the distance between the vertices $u$ and $v$ of‎ ‎$G$‎. ‎For $Ssubseteq V(G)$‎, ‎the Steiner distance $d(S)$ of‎ ‎the vertices of $S$ is the minimum size of a connected subgraph of‎ ‎$G$ whose vertex set is $S$‎. ‎The  $k$-th Steiner Wiener index‎ ‎$SW_k(G)$ of $G$ is defined as‎ ‎$SW_k(G)=sum_{overset{Ssubseteq V(G)}{|S|=k}} d(S)$‎. ‎We establish‎ ‎expressions for the $k$-th Steiner Wiener index on the join‎, ‎corona‎, ‎cluster‎, ‎lexicographical product‎, ‎and Cartesian product of graphs‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"5 1\",\"pages\":\"39-50\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2016.13499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2016.13499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

摘要

连通图$G$的Wiener指数$W(G)$定义为$W(G)=sum_{u,vin V(G)}d_G(u, V)$ $其中$d_G(u, V)$是$G$ $ $的顶点$u$和$ V $之间的距离。对于$Ssubseteq V(G)$ $, $S$的顶点的Steiner距离$d(S)$是$ $G$的连通子图的最小大小,其顶点集为$S$ $。‎k th Steiner维纳美元指数‎‎SW_k美元(G) G被定义为美元的美元‎‎SW_k美元(G) = sum_{打翻{Ssubseteq V (G)} {S | | = k}} d (S)‎美元。我们建立了图的连接、冕、聚类、词典积和笛卡尔积上的第k阶Steiner Wiener索引的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steiner Wiener index of graph products
The Wiener index $W(G)$ of a connected graph $G$‎ ‎is defined as $W(G)=sum_{u,vin V(G)}d_G(u,v)$‎ ‎where $d_G(u,v)$ is the distance between the vertices $u$ and $v$ of‎ ‎$G$‎. ‎For $Ssubseteq V(G)$‎, ‎the Steiner distance $d(S)$ of‎ ‎the vertices of $S$ is the minimum size of a connected subgraph of‎ ‎$G$ whose vertex set is $S$‎. ‎The  $k$-th Steiner Wiener index‎ ‎$SW_k(G)$ of $G$ is defined as‎ ‎$SW_k(G)=sum_{overset{Ssubseteq V(G)}{|S|=k}} d(S)$‎. ‎We establish‎ ‎expressions for the $k$-th Steiner Wiener index on the join‎, ‎corona‎, ‎cluster‎, ‎lexicographical product‎, ‎and Cartesian product of graphs‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信