D. Mojdeh, A. Sayed-Khalkhali, H. A. Ahangar, Yancai Zhao
{"title":"总$k$距离支配临界图","authors":"D. Mojdeh, A. Sayed-Khalkhali, H. A. Ahangar, Yancai Zhao","doi":"10.22108/TOC.2016.11972","DOIUrl":null,"url":null,"abstract":"A set $S$ of vertices in a graph $G=(V,E)$ is called a total $k$-distance dominating set if every vertex in $V$ is within distance $k$ of a vertex in $S$. A graph $G$ is total $k$-distance domination-critical if $gamma_{t}^{k} (G - x) < gamma_{t}^{k} (G)$ for any vertex $xin V(G)$. In this paper, we investigate some results on total $k$-distance domination-critical of graphs.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"5 1","pages":"1-9"},"PeriodicalIF":0.6000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Total $k$-distance domination critical graphs\",\"authors\":\"D. Mojdeh, A. Sayed-Khalkhali, H. A. Ahangar, Yancai Zhao\",\"doi\":\"10.22108/TOC.2016.11972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set $S$ of vertices in a graph $G=(V,E)$ is called a total $k$-distance dominating set if every vertex in $V$ is within distance $k$ of a vertex in $S$. A graph $G$ is total $k$-distance domination-critical if $gamma_{t}^{k} (G - x) < gamma_{t}^{k} (G)$ for any vertex $xin V(G)$. In this paper, we investigate some results on total $k$-distance domination-critical of graphs.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"5 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2016.11972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2016.11972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A set $S$ of vertices in a graph $G=(V,E)$ is called a total $k$-distance dominating set if every vertex in $V$ is within distance $k$ of a vertex in $S$. A graph $G$ is total $k$-distance domination-critical if $gamma_{t}^{k} (G - x) < gamma_{t}^{k} (G)$ for any vertex $xin V(G)$. In this paper, we investigate some results on total $k$-distance domination-critical of graphs.