具有周期子系统的非线性大系统向量Lyapunov函数的构造

IF 0.9 4区 数学 Q1 Mathematics
I. Atamas, V. Denysenko, V. Slyn'ko
{"title":"具有周期子系统的非线性大系统向量Lyapunov函数的构造","authors":"I. Atamas, V. Denysenko, V. Slyn'ko","doi":"10.18514/mmn.2023.4207","DOIUrl":null,"url":null,"abstract":". A new approach for constructing vector Lyapunov function for nonlinear non-autonomous large-scale systems is proposed. It is assumed that independent subsystems are linear periodic systems. The components of the vector Lyapunov function are chosen as a quadratic form with a variable matrix. This matrix is an approximate solution of the Lyapunov matrix differential equation. This solution is constructed using the discretization method and the representation of the evolution operator proposed by Magnus. Sufficient conditions for the asymptotic stability of a trivial solution of a nonlinear large-scale system are established. The effectiveness of obtained results are illustrated by the example of stability investigation for coupled systems.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of vector Lyapunov function for nonlinear large-scale system with periodic subsystems\",\"authors\":\"I. Atamas, V. Denysenko, V. Slyn'ko\",\"doi\":\"10.18514/mmn.2023.4207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A new approach for constructing vector Lyapunov function for nonlinear non-autonomous large-scale systems is proposed. It is assumed that independent subsystems are linear periodic systems. The components of the vector Lyapunov function are chosen as a quadratic form with a variable matrix. This matrix is an approximate solution of the Lyapunov matrix differential equation. This solution is constructed using the discretization method and the representation of the evolution operator proposed by Magnus. Sufficient conditions for the asymptotic stability of a trivial solution of a nonlinear large-scale system are established. The effectiveness of obtained results are illustrated by the example of stability investigation for coupled systems.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4207\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4207","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 提出了一种构造非线性非自治大系统向量Lyapunov函数的新方法。假设独立子系统为线性周期系统。向量李雅普诺夫函数的分量选择为具有变量矩阵的二次型。这个矩阵是李雅普诺夫矩阵微分方程的近似解。利用Magnus提出的离散化方法和演化算子的表示构造了该解。建立了一类非线性大系统平凡解渐近稳定的充分条件。通过耦合系统稳定性研究实例说明了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of vector Lyapunov function for nonlinear large-scale system with periodic subsystems
. A new approach for constructing vector Lyapunov function for nonlinear non-autonomous large-scale systems is proposed. It is assumed that independent subsystems are linear periodic systems. The components of the vector Lyapunov function are chosen as a quadratic form with a variable matrix. This matrix is an approximate solution of the Lyapunov matrix differential equation. This solution is constructed using the discretization method and the representation of the evolution operator proposed by Magnus. Sufficient conditions for the asymptotic stability of a trivial solution of a nonlinear large-scale system are established. The effectiveness of obtained results are illustrated by the example of stability investigation for coupled systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信