离散时间猎物-捕食者模型的丰富动力学

IF 0.9 4区 数学 Q1 Mathematics
Z. Eskandari, R. K. Ghaziani, Z. Avazzadeh
{"title":"离散时间猎物-捕食者模型的丰富动力学","authors":"Z. Eskandari, R. K. Ghaziani, Z. Avazzadeh","doi":"10.18514/mmn.2023.4186","DOIUrl":null,"url":null,"abstract":". A newly-disclosed non-standard finite difference method has been used to discretize a prey-predator model to investigate the critical normal form coefficients of bifurcations for both one-parameter and two-parameter bifurcations. The discrete-time prey-predator model exhibits variety of local bifurcations such as period-doubling, Neimark-Sacker, and strong resonances. Critical normal form coefficients are determined to reveal dynamical scenario corresponding to each bifurcation point bifurcation. We also investigates the complex dynamics of the model numerically using by M ATLAB package M ATCONT M based on numerical continuation technique.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rich dynamics of a discrete-time prey-predator model\",\"authors\":\"Z. Eskandari, R. K. Ghaziani, Z. Avazzadeh\",\"doi\":\"10.18514/mmn.2023.4186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A newly-disclosed non-standard finite difference method has been used to discretize a prey-predator model to investigate the critical normal form coefficients of bifurcations for both one-parameter and two-parameter bifurcations. The discrete-time prey-predator model exhibits variety of local bifurcations such as period-doubling, Neimark-Sacker, and strong resonances. Critical normal form coefficients are determined to reveal dynamical scenario corresponding to each bifurcation point bifurcation. We also investigates the complex dynamics of the model numerically using by M ATLAB package M ATCONT M based on numerical continuation technique.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4186\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4186","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 采用非标准有限差分方法对捕食-捕食模型进行离散化,研究了单参数和双参数分岔的临界范式系数。离散时间捕食者-猎物模型表现出多种局部分岔,如周期加倍、内马克-萨克和强共振。确定了临界范式系数,揭示了各分岔点分岔所对应的动力情景。基于数值延拓技术,利用ATLAB软件对模型的复杂动力学特性进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rich dynamics of a discrete-time prey-predator model
. A newly-disclosed non-standard finite difference method has been used to discretize a prey-predator model to investigate the critical normal form coefficients of bifurcations for both one-parameter and two-parameter bifurcations. The discrete-time prey-predator model exhibits variety of local bifurcations such as period-doubling, Neimark-Sacker, and strong resonances. Critical normal form coefficients are determined to reveal dynamical scenario corresponding to each bifurcation point bifurcation. We also investigates the complex dynamics of the model numerically using by M ATLAB package M ATCONT M based on numerical continuation technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信