一类具有梯度相关反应项的双相变指数问题弱解的存在性

IF 0.9 4区 数学 Q1 Mathematics
Mohamed El Ouaarabi, C. Allalou, S. Melliani
{"title":"一类具有梯度相关反应项的双相变指数问题弱解的存在性","authors":"Mohamed El Ouaarabi, C. Allalou, S. Melliani","doi":"10.18514/mmn.2023.4119","DOIUrl":null,"url":null,"abstract":". In the present paper, we study the existence of at least one weak solution for a class of double phase variable exponent problem with a reaction term depending on the gradient and on two real parameters. By using the topological degree theory for a class of demicontinuous operators of generalized ( S + ) and the theory of the variable exponent Sobolev spaces, we obtain the existence of at least one weak solution of this problem.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of weak solutions for a double phase variable exponent problem with a gradient dependent reaction term\",\"authors\":\"Mohamed El Ouaarabi, C. Allalou, S. Melliani\",\"doi\":\"10.18514/mmn.2023.4119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the present paper, we study the existence of at least one weak solution for a class of double phase variable exponent problem with a reaction term depending on the gradient and on two real parameters. By using the topological degree theory for a class of demicontinuous operators of generalized ( S + ) and the theory of the variable exponent Sobolev spaces, we obtain the existence of at least one weak solution of this problem.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4119\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4119","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 本文研究了一类反应项依赖于梯度和两个实参数的双相变指数问题至少一个弱解的存在性。利用一类广义(S +)半连续算子的拓扑度理论和变指数Sobolev空间理论,得到了该问题的至少一个弱解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of weak solutions for a double phase variable exponent problem with a gradient dependent reaction term
. In the present paper, we study the existence of at least one weak solution for a class of double phase variable exponent problem with a reaction term depending on the gradient and on two real parameters. By using the topological degree theory for a class of demicontinuous operators of generalized ( S + ) and the theory of the variable exponent Sobolev spaces, we obtain the existence of at least one weak solution of this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信