利用ψ-Hilfer导数定性研究脉冲受电弓分数阶积分微分方程

IF 0.9 4区 数学 Q1 Mathematics
M. Beddani, Hamid Beddani, Michal Feckan
{"title":"利用ψ-Hilfer导数定性研究脉冲受电弓分数阶积分微分方程","authors":"M. Beddani, Hamid Beddani, Michal Feckan","doi":"10.18514/mmn.2023.4032","DOIUrl":null,"url":null,"abstract":". In this paper, we study the existence and stability of solutions for impulsive pantograph fractional integro-differential equation via ψ -Hilfer fractional derivative in a appropriate Banach space. Our approach is based on fixed point theorems of Darbo’s and M¨onch via Kuratowski measure of non-compactness. An example is given to illustrate our approach.","PeriodicalId":49806,"journal":{"name":"Miskolc Mathematical Notes","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative study for impulsive pantograph fractional integro-differential equation via ψ-Hilfer derivative\",\"authors\":\"M. Beddani, Hamid Beddani, Michal Feckan\",\"doi\":\"10.18514/mmn.2023.4032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the existence and stability of solutions for impulsive pantograph fractional integro-differential equation via ψ -Hilfer fractional derivative in a appropriate Banach space. Our approach is based on fixed point theorems of Darbo’s and M¨onch via Kuratowski measure of non-compactness. An example is given to illustrate our approach.\",\"PeriodicalId\":49806,\"journal\":{\"name\":\"Miskolc Mathematical Notes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Miskolc Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18514/mmn.2023.4032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Miskolc Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 本文利用ψ -Hilfer分数阶导数研究了脉冲受电弓分数阶积分微分方程在适当的Banach空间中解的存在性和稳定性。我们的方法是基于Darbo和M¨onch的不动点定理,通过Kuratowski的非紧性度量。给出了一个例子来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative study for impulsive pantograph fractional integro-differential equation via ψ-Hilfer derivative
. In this paper, we study the existence and stability of solutions for impulsive pantograph fractional integro-differential equation via ψ -Hilfer fractional derivative in a appropriate Banach space. Our approach is based on fixed point theorems of Darbo’s and M¨onch via Kuratowski measure of non-compactness. An example is given to illustrate our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Miskolc Mathematical Notes
Miskolc Mathematical Notes Mathematics-Algebra and Number Theory
CiteScore
2.00
自引率
0.00%
发文量
9
期刊介绍: Miskolc Mathematical Notes, HU ISSN 1787-2405 (printed version), HU ISSN 1787-2413 (electronic version), is a peer-reviewed international mathematical journal aiming at the dissemination of results in many fields of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信